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Electrons in 
Vibrating Buckyball 

Cellular Tomography, 

 Cryo-electron Microscopy 

Poliovirus 

Ribosome Sequences 

VMD ï ñVisual Molecular Dynamicsò 

Whole Cell Simulations 

ÅVisualization and analysis of: 

ï molecular dynamics simulations 

ï quantum chemistry calculations 

ï particle systems and whole cells 

ï sequence data 

ÅUser extensible w/ scripting and plugins 

Åhttp://www.ks.uiuc.edu/Research/vmd/ 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

GPU Computing 

ÅCommodity devices, omnipresent in modern 
computers (over a million  sold per week) 

ÅMassively parallel hardware, hundreds of processing 
units, throughput oriented architecture 

ÅStandard integer and floating point types supported 

ÅProgramming tools allow software to be written in 
dialects of familiar C/C++ and integrated into legacy 
software 

ÅGPU algorithms are often multicore friendly due to 
attention paid to data locality and data-parallel 
work decomposition 
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What Speedups Can GPUs Achieve? 

ÅSingle-GPU speedups of 10x to 30x vs. one 
CPU core are common 

ÅBest speedups can reach 100x or more, 
attained on codes dominated by  floating 
point arithmetic, especially native GPU 
machine instructions, e.g. expf(), rsqrtf(), é 

ÅAmdahlôs Law can prevent legacy codes 
from achieving peak speedups with shallow 
GPU acceleration efforts 
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CUDA GPU-Accelerated Trajectory 

Analysis and Visualization in VMD 
GPU-Accelerated Feature         

or Kernel 

Typical speedup vs. 

a single CPU core 

Molecular orbital display 120x 

Radial distribution function  92x 

Ray tracing w/ shadows 46x 

Electrostatic field calculation 44x 

Molecular surface display 40x 

Ion placement 26x 

MDFF density map synthesis  26x 

Implicit ligand sampling 25x 

Root mean squared fluctuation 25x 

Radius of gyration 21x 

Close contact determination 20x 

Dipole moment calculation 15x 
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Peak Arithmetic Performance: Exponential Trend 
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Peak Memory Bandwidth: Linear Trend 
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Comparison of CPU and GPU           

Hardware Architecture 

CPU: Cache heavy, 
focused on individual 
thread performance  

GPU: ALU heavy, 
massively parallel, 
throughput oriented 
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NVIDIA Kepler GPU Streaming Multiprocessor - SMX 

GPC GPC GPC GPC 

1536KB 

Level 2 

Cache 

SMX SMX 

Tex Unit 

48 KB  Tex + Read-only Data Cache 

64 KB L1 Cache / Shared Memory 

~3-6 GB DRAM Memory w/ ECC 64 KB Constant Cache 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

16 × Execution block = 

 192 SP, 64 DP,  

32 SFU, 32 LDST 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

 Graphics Processor 

         Cluster 

GPC GPC GPC GPC 
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What Runs on a GPU? 

ÅGPUs run data-parallel programs called 

ñkernelsò 

ÅGPUs are managed by a host CPU thread: 

ïCreate a CUDA context 

ïAllocate/deallocate GPU memory 

ïCopy data between host and GPU memory 

ïLaunch GPU kernels 

ïQuery GPU status 

ïHandle runtime errors 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

CUDA Stream of Execution 

ÅHost CPU thread 

launches a CUDA 

ñkernelò, a memory 

copy, etc. on the GPU 

ÅGPU action runs to 

completion 

ÅHost synchronizes 

with completed GPU 

action 

CPU GPU 

CPU code 
running 

CPU waits for 
GPU, ideally doing 

something 
productive 

CPU code 
running 
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CUDA Grid/Block/Thread Decomposition 

Padding arrays out to full blocks 
optimizes global memory performance 
by guaranteeing memory coalescing 

1-D, 2-D, or 3-D (SM >= 2.x) 
Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

é 

é é 

é 

é 

1-D, 2-D, or 3-D 
Computational Domain 

1-D, 2-D, 3-D 
thread block: 
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CUDA Work Abstractions: 

 Grids, Thread Blocks, Threads 
1-D, 2-D, or 3-D (SM >= 2.x) 
Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

é 

é 

é 

é 

é 

1-D, 2-D, 3-D 
thread block: 

SM / SMX 

Thread blocks are 
scheduled onto pool 
of GPU SMsé 
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An Approach to Writing CUDA Kernels  
ÅFind an algorithm that can expose substantial parallelism, 

weôll ultimately need thousands of independent threadsé 

Å Identify appropriate GPU memory or texture subsystems 

used to store data used by kernel 

ÅAre there trade-offs that can be made to exchange 

computation for more parallelism? 

ïThough counterintuitive, past successes resulted from this strategy 

ïñBrute forceò methods that expose significant parallelism do 

surprisingly well on GPUs 

ÅAnalyze the real-world use case for the problem and select 

a specialized kernel for the problem sizes that will be 

heavily used 
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GPUs Require ~20,000 Independent Threads 

for Full Utilization, Latency Hidding 

GPU 

underutilized 

GPU fully utilized, 

~40x faster than CPU 

Accelerating molecular modeling applications with graphics processors. 

J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.   

J. Comp. Chem., 28:2618-2640, 2007. 

Lower  

is better 

Host thread 

 GPU Cold Start: 

context init, 

device binding, 

kernel PTX JIT: 

~110ms  
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Getting Performance From GPUs 

ÅDonôt worry (much) about counting arithmetic 

operationséat least until you have nothing else left to do 

ÅGPUs provide tremendous memory bandwidth, but even 

so, memory bandwidth often ends up being the 

performance limiter 

ÅKeep/reuse data in registers as long as possible 

ÅThe main consideration when programming GPUs is 

accessing memory efficiently, and storing operands in 

the most appropriate memory system according to data 

size and access pattern 
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GPU Memory Systems 
ÅGPU arithmetic rates dwarf memory bandwidth 

ÅFor Kepler K20 hardware: 

ï~2 TFLOPS vs. ~250 GB/sec 

ïThe ratio is roughly 40 FLOPS per memory 

reference for single-precision floating point 

ÅGPUs include multiple fast on-chip memories to 

help narrow the gap: 

ïRegisters 

ïConstant memory (64KB) 

ïShared memory (48KB / 16KB) 

ïRead-only data cache / Texture cache (48KB) 
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Loop Unrolling, Register Tiling 
éfor (atomid=0; atomid<numatoms; atomid++) { 

      float dy = coory - atominfo[atomid].y; 

      float dysqpdzsq = (dy * dy) + atominfo[atomid].z; 

      float x = atominfo[atomid].x; 

      float dx1 = coorx1 - x; 

      float dx2 = coorx2 - x; 

      float dx3 = coorx3 - x; 

      float dx4 = coorx4 - x; 

      float charge = atominfo[atomid].w; 

      energyvalx1 += charge * rsqrtf(dx1*dx1 + dysqpdzsq); 

      energyvalx2 += charge * rsqrtf(dx2*dx2 + dysqpdzsq); 

      energyvalx3 += charge * rsqrtf(dx3*dx3 + dysqpdzsq); 

      energyvalx4 += charge * rsqrtf(dx4*dx4 + dysqpdzsq); 

    }  

Compared to non-unrolled 
kernel: memory loads are 

decreased by 4x, and FLOPS 
per evaluation are reduced, but 
register use is increasedé 
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Avoid Output Conflicts,  

Conversion of Scatter to Gather 

ÅMany CPU codes contain algorithms that ñscatterò 
outputs to memory, to reduce arithmetic 

ÅScattered output can create bottlenecks for GPU 
performance due to bank conflicts 

ÅOn the GPU, itôs often better to do more 
arithmetic , in exchange for a regularized output 
pattern, or to convert ñscatterò algorithms to 
ñgatherò approaches 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

Avoid Output Conflicts:  

Privatization Schemes 
ÅPrivatization: use of private work areas for workers 

ïAvoid/reduce the need for thread synchronization barriers 

ïAvoid/reduce the need atomic increment/decrement 
operations during work, use parallel reduction at the endé 

ÅBy working in separate memory buffers, workers 
avoid read/modify/write conflicts of various kinds 

ÅHuge GPU thread counts make it impractical to 
privatize data on a per-thread basis, so GPUs must use 
coarser granularity: warps, thread-blocks 

ÅUse of the on-chip shared memory local to each SM 
can often be considered a form of privatization 
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Example: avoiding output conflicts when 

summing numbers among threads in a block 

N-way output conflict:                 
Correct results require costly barrier 
synchronizations or atomic memory 
operations ON EVERY ADD to prevent 
threads from overwriting each otheré 

Parallel reduction: no output 
conflicts, Log2(N) barriers 

+= 

= 

+= 

+= 

+= 

+= 

Accumulate sums in thread-
local registers before doing any 

reduction among threads 
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Using the CPU to Optimize GPU Performance 

ÅGPU performs best when the work evenly divides 

into the number of threads/processing units 

ÅOptimization strategy:  

ïUse the CPU to ñregularizeò the GPU workload 

ïUse fixed size bin data structures, with ñemptyò slots 

skipped or producing zeroed out results 

ïHandle exceptional or irregular work units on the CPU; 

GPU processes the bulk of the work concurrently 

ïOn average, the GPU is kept highly occupied, attaining 

a high fraction of peak performance 
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Science 5: Quantum Chemistry Visualization  

ÅChemistry is the result of 
atoms sharing electrons 

ÅElectrons occupy ñcloudsò 
in the space around atoms 

ÅCalculations for visualizing 
these ñcloudsò are costly:  
tens to hundreds of 
seconds on CPUs ï non-
interactive 

ÅGPUs enable the dynamics 
of electronic structures to be 
animated interactively for 
the first time 

VMD enables interactive display of QM simulations, e.g. 
Terachem, GAMESS 

Taxol: cancer drug 
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GPU Solution: Computing C60 Molecular Orbitals 

Device CPUs,  

GPUs 

Runtime 

(s) 

Speedup 

2x Intel X5550-SSE 8 4.13 1 

GeForce GTX 480 1 0.255 16 

GeForce GTX 480 4 0.081 51 

2-D CUDA grid 
on one GPU 

              

3-D orbital lattice: 
millions of points 

              

Lattice slices 
computed on 

multiple GPUs 
GPU threads 
each compute 

one point. 

CUDA thread 
blocks 
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Molecular Orbital Inner Loop, Hand -Coded x86 SSE 

Hard to Read, Isnôt It?  (And this is the ñprettyò version!) 

for (shell=0; shell < maxshell; shell++) { 

    __m128 Cgto = _mm_setzero_ps(); 

    for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) { 

        float exponent         = -basis_array[prim_counter      ]; 

        float contract_coeff =  basis_array[prim_counter + 1]; 

        __m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2); 

        __m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval)); 

        Cgto = _mm_add_ps(contracted_gto, ctmp); 

        prim_counter += 2; 

    }  

    __m128 tshell = _mm_setzero_ps(); 

    switch (shell_types[shell_counter]) { 

        case S_SHELL: 

            value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto));    break; 

        case P_SHELL: 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist)); 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist)); 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist)); 

            value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto));       break; 

Writing SSE kernels for CPUs requires 
assembly language, compiler intrinsics, 

various libraries, or a really smart 
autovectorizing compiler and lots of luck... 
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for (shell=0; shell < maxshell; shell++) { 

      float contracted_gto = 0.0f; 

      for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {  

        float exponent          = const_basis_array[prim_counter     ]; 

        float contract_coeff = const_basis_array[prim_counter + 1]; 

        contracted_gto += contract_coeff * exp2f(-exponent*dist2); 

        prim_counter += 2; 

      }  

      float tmpshell=0; 

      switch (const_shell_symmetry[shell_counter]) { 

        case S_SHELL: 

          value += const_wave_f[ifunc++] * contracted_gto;    break; 

        case P_SHELL: 

          tmpshell += const_wave_f[ifunc++] * xdist; 

          tmpshell += const_wave_f[ifunc++] * ydist 

          tmpshell += const_wave_f[ifunc++] * zdist; 

          value += tmpshell * contracted_gto;   break; 

Molecular Orbital Inner Loop in CUDA  
 

Aaaaahhhhé. 

Data-parallel CUDA kernel 
looks like normal C code for 

the most parté. 
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NAMD Titan XK7 Performance August 2013 

HIV -1 Data: ~1.2 TB/day @ 
4096 XK7 nodes 

NAMD XK7 vs. XE6 

Speedup: 3x-4x 
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VMD Petascale Visualization and Analysis 

ÅAnalyze/visualize large trajectories too 
large to transfer off-site: 

ïCompute time-averaged electrostatic fields, 
MDFF quality-of-fit, etc. 

ïUser-defined parallel analysis operations, 
data types 

ïParallel rendering, movie making 

ÅParallel I/O rates up to 275 GB/sec on 
8192 Cray XE6 nodes ï can read in   
231 TB in 15 minutes! 

ÅMulti -level dynamic load balancing 
tested with up to 262,144 CPU cores 

ÅSupports GPU-accelerated Cray 
XK7 nodes for both visualization and 
analysis usage 

NCSA Blue Waters Hybrid       
Cray XE6 / XK7 Supercomputer 

22,640 XE6 CPU nodes 

4,224 XK7 nodes w/ GPUs support 
fast VMD OpenGL movie 
rendering and visualization 
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VMD for Demanding Analysis Tasks 

Parallel VMD Analysis w/ MPI 

ÅCompute time-averaged 
electrostatic fields, MDFF 
quality-of-fit, etc. 

ÅParallel rendering, movie making 

ÅUser-defined parallel reduction 
operations, data types 

ÅParallel I/O on Blue Waters:  

ï109 GB/sec on 512 nodes  

ï275 GB/sec on 8,192 nodes 

ÅTimeline per-residue SASA 
calc. achieves 800x speedup @ 
1000 BW XE6 nodes 

Å  Supports GPU-accelerated 
clusters and supercomputers 

VMD 

VMD 

VMD 

Sequence/Structure Data,  

Trajectory Frames, etcé 

Gathered Results 

Data-parallel 

analysis in 
VMD 

w/ dynamic 
load 

balancing 
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VMD as an Analysis Platform 

Over 60 VMD Plugins Developed by Users 

Å VMD/NAMD sister programs, 
VMD is crucial for simulation 
analysis 

Å VMD user-extensible scripting w/ 
Tcl/Tk, Python 

Å Compiled C/C++ plugins loaded 
from shared libraries at runtime via 
dlopen()  

Å 70 molfile plugins provide access to 
molecular file formats 

Å Built -in analysis commands 
exploit XE6 multi -core CPUs, 
XK7Tesla K20X GPUs 

Å New VMD collective ops and 
work scheduling interfaces 
enable existing code to be 
parallelized easily 

VMD Core 

Molfile  

Plugins 

Graphical 

Interface 

Plugins 

Text 

Plugins 

Tcl/Tk Python 
Plugin 

Interface 
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Radial Distribution Function 

ÅRDFs describes how 
atom density varies 
with distance 

ÅCan be compared with 
experiments 

ÅShape indicates phase  
of matter: sharp peaks 
appear for solids, 
smoother for liquids 

Solid 

Liquid 
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Multi -GPU RDF Performance 

Å 4 NVIDIA GTX480 
GPUs 30 to 92x faster 
than 4-core Intel X5550 
CPU 

Å Fermi GPUs ~3x faster 
than GT200 GPUs: 
larger on-chip shared 
memory 

Solid 

Liquid 

Fast Analysis of Molecular Dynamics Trajectories 
with Graphics Processing Units ï Radial Distribution 
Functions.  B. Levine, J. Stone, and A. Kohlmeyer. 2010. 

J. Comp. Physics, 230(9):3556-3569, 2011. 
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Time-Averaged Electrostatics Analysis 

on Energy-Efficient GPU Cluster 
Å1.5 hour job (CPUs) reduced to 

3 min (CPUs+GPU) 

ÅElectrostatics of thousands of 
trajectory frames averaged  

ÅPer-node power consumption on 
NCSA ñACò GPU cluster: 

ïCPUs-only:  448 Watt-hours 

ïCPUs+GPUs: 43 Watt-hours 

ÅGPU Speedup: 25.5x 

ÅPower efficiency gain: 10.5x 

Quantifying the Impact of GPUs on Performance and Energy 
Efficiency in HPC Clusters. J. Enos, C. Steffen, J. Fullop, M. 

Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J. Phillips.  
The Work in Progress in Green Computing,  pp. 317-324, 2010. 
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Time-Averaged Electrostatics Analysis on  

NCSA Blue Waters 

Preliminary performance for VMD time-averaged electrostatics w/ Multilevel 
Summation Method on the NCSA Blue Waters Early Science System 

NCSA Blue Waters Node Type Seconds per trajectory 

frame for one compute 

node 

Cray XE6 Compute Node: 

32 CPU cores (2xAMD 6200 CPUs) 

9.33 

Cray XK6 GPU-accelerated Compute Node: 

16 CPU cores + NVIDIA  X2090 (Fermi) GPU 

2.25 

Speedup for GPU XK6 nodes vs. CPU XE6 nodes XK6 nodes are 4.15x 

faster overall 

Tests on XK7 nodes indicate MSM is CPU-bound with 

the Kepler K20X GPU. 

Performance is not much faster (yet) than Fermi X2090 

Need to move spatial hashing, prolongation, 

interpolation onto the GPUé 

In progressé. 

XK7 nodes 4.3x faster 

overall  
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Multilevel Summation on the GPU 

Computational steps CPU (s) w/ GPU (s) Speedup 

Short-range cutoff 480.07 14.87 32.3 

Long-range anterpolation 0.18 

restriction 0.16 

lattice cutoff 49.47 1.36 36.4 

prolongation 0.17 

interpolation 3.47 

Total 533.52 20.21 26.4 

Performance profile for 0.5 Å map of potential for  1.5 M atoms. 

Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280. 

Accelerate  short-range cutoff  and  lattice cutoff  parts 

 

Multilevel summation of electrostatic potentials using graphics 
processing units. D. Hardy, J. Stone, K. Schulten. J. Parallel 

Computing, 35:164-177, 2009. 
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ÅDisplays continuum of structural detail: 

ïAll -atom models 

ïCoarse-grained models 

ïCellular scale models 

ïMulti -scale models: All-atom + CG,  Brownian + Whole Cell 

ïSmoothly variable between full detail, and reduced resolution 

representations of very large complexes 

VMD ñQuickSurfò Representation 

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and 
Particle System Trajectories.   

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012 
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ÅUses multi-core CPUs and GPU acceleration to enable smooth 

real-time animation of MD trajectories  

ÅLinear-time algorithm, scales to millions of particles, as limited 

by memory capacity 

VMD ñQuickSurfò Representation 

Satellite Tobacco Mosaic Virus Lattice Cell Simulations 


