
drdobbs.com http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659

CUDA, Supercomputing for the Masses: Part 1

By Rob Farber, April 15, 2008

CUDA lets you work with familiar programming concepts while developing software that can run on a GPU

Are you interested in getting orders-of-magnitude performance increases over standard multi-core processors, while
programming with a high-level language such as C? And would you like that capability to scale across many devices
as well?

Many people (myself included) have achieved this level of performance and scalability on non-trivial problems by
using CUDA (short for "Compute Unified Device Architecture") from NVIDIA to program inexpensive multi-threaded
GPUs. I purposefully stress "programming" because CUDA is an architecture designed to let you do your work, rather
than forcing your work to fit within a limited set of performance libraries. With CUDA, you get to exploit your abilities to
design software to achieve best performance on your multi-threaded hardware -- and have fun as well because
figuring out the right mapping is captivating, plus the software development environment is both reasonable and
straightforward.

This is the first of a series of articles to introduce you to the power of CUDA -- through working code -- and to the
thought process to help you map applications onto multi-threaded hardware (such as GPUs) to get big performance
increases. Of course, not all problems can be mapped efficiently onto multi-threaded hardware, so part of my thought
process will be to distinguish what will and what won't work, plus provide a common-sense idea of what might work
"well-enough".

"CUDA programming" and "GPGPU programming" are not the same (although CUDA runs on GPUs). Previously,
writing software for a GPU meant programming in the language of the GPU. An acquaintance of mine once described
this as a process similar to pulling data out of your elbow to get it to where you could look at it with your eyes. CUDA
permits working with familiar programming concepts while developing software that can run on a GPU. It also avoids
the performance overhead of graphics layer APIs by compiling your software directly to the hardware (GPU assembly
language, for instance), thereby providing great performance.

The choice of CUDA device is up to you. Figures 1 and 2 show the CUDA N-body simulation program running on both
a laptop and a discrete GPU based desktop PC.

Figure 1: nBody Astrophysics Simulation running on a Quadro FX 570M enabled laptop.

Figure 2: nBody Astrophysics Simulation running on a GeForce 8800 GTS 512MB enabled desktop

Can CUDA really increase application performance by one to two orders of magnitude -- or is all this hype rather than
reality?

CUDA is a fairly new technology but there are already many examples in the literature and on the Internet highlighting
significant performance boosts using current commodity GPU hardware. Tables 1 and 2 show summaries posted on
the NVIDIA and Beckman Institute websites. At the heart of CUDA is the ability for programmers to keep thousands of
threads busy. The current generation of NVIDIA GPUs can efficiently support a very large number of threads, and as a
result they can deliver one to two orders of magnitude performance increase in application performance. These
graphics processors are widely available to anyone at almost any price point. Newer boards will expand CUDA's
capabilities by providing greater memory bandwidth, asynchronous data transfer, atomic operations, and double-
precision floating point arithmetic among many hardware improvements. Look for the CUDA software environment to

http://www.drdobbs.com
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/


expand as the technology evolves and we eventually lose the distinction between GPUs and "many-core" processors.
As developers, we have to anticipate that
applications with many thousands of
active threads will become common-
place and look for CUDA to run on many
platforms, including general-purpose
processors.

 

Example Applications URL Application Speedup

Seismic Database http://www.headwave.com 66x to 100x

Mobile Phone Antenna Simulation http://www.acceleware.com 45x

Molecular Dynamics http://www.ks.uiuc.edu/Research/vmd 21x to 100x

Neuron Simulation http://www.evolvedmachines.com 100x

MRI processing http://bic-test.beckman.uiuc.edu 245x to 415x

Atmospheric Cloud Simulation http://www.cs.clemson.edu/~jesteel/clouds.html 50x

Table 1: NVIDIA summary from www.nvidia.com/object/IO_43499.html

http://www.headwave.com/
http://www.acceleware.com/
http://www.ks.uiuc.edu/Research/vmd
http://www.evolvedmachines.com/
http://bic-test.beckman.uiuc.edu/
http://www.cs.clemson.edu/~jesteel/clouds.html


GPU Performance Results, March 2008

GeForce8800GTX w/ CUDA 1.1, Driver 169.09

Calculation / Algorithm Algorithm class Speedup vs. Intel QX6700
CPU

Fluorescence microphotolysis Iterative matrix / stencil 12x

Pairlist calculation Particle pair distance test 10x to 11x

Pairlist update Particle pair distance test 5x to 15x

Molecular dynamics nonbonded force
calculation

N-body cutoff force
calculations

10x to 20x

Cutoff electron density sum Particle-grid w/ cutoff 15x to 23x

Cutoff potential summation Particle-grid w/ cutoff 12x to 21x

Direct Coulomb summation Particle-grid 44x

Table 2: Beckman Institute table from www.ks.uiuc.edu/Research/vmd/publications/siam2008vmdcuda.pdf


	CUDA, Supercomputing for the Masses: Part 1

