TCB Publications - Abstract

Chaitanya Sathe, Anuj Girdhar, Jean-Pierre Leburton, and Klaus Schulten. Electronic detection of dsDNA transition from helical to zipper conformation using graphene nanopores. Nanotechnology, 25:445105, 2014. (9 pages). (PMC: PMC4244269)

SATH2014 Mechanical manipulation of DNA, by forced extension, can lead to a structural transformation of double-stranded DNA (dsDNA) from a helical form to a linear zipper-like form. By employing classical molecular dynamics and quantum mechanical non- equilibrium Greens function-based transport simulations, we show the ability of graphene nanopores to discern different dsDNA conformations, in a helical to zipper transition, using transverse electronic conductance. In particular, conductance oscillations due to helical dsDNA vanish as dsDNA extends from helical to zipper form as it is transported through the nanopore. The predicted ability to detect conformational changes in dsDNA, via transverse electronic conductance, can widen the potential of graphene-based nanosensors for DNA detection.


Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: Request a Copy, Journal