TCB Publications - Abstract

Walter Nadler, Axel Brünger, Klaus Schulten, and Martin Karplus. Molecular and stochastic dynamics of proteins. Proceedings of the National Academy of Sciences, USA, 84:7933-7937, 1987. (PMC: 299450)

NADL87 The rapid fluctuations of protein atoms derived from molecular dynamics simulations can be extrapolated to longer-time motions by effective single-particle stochastic models. This is demonstrated by an analysis of velocity autocorrelation functions for the atoms of lysine side chains in the active site of RNase A. The atomic motions are described by a bounded stochastic model with the friction and noise parameters determined from a molecular dynamics simulation. The low-frequency relaxation behavior is shown to result from collisional damping rather than dephasing. Extrapolation of these results to the quasistochastic motion of the heme group in myoglobin provides an explanation of $^{57}Fe$ Mössbauer spectroscopic data.

Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: PDF (476.6KB)