Remembering Klaus Schulten

“When I was a young man, my goal was to look with mathematical and computational means at the inside of cells, one atom at a time, to decipher how living systems work. That is what I strived for and I never deflected from this goal.”

Klaus Schulten, professor of physics and Beckman Institute faculty member for nearly 25 years, has died after an illness. Schulten, who led the Theoretical and Computational Biophysics Group, was a leader in the field of biophysics, conducting seminal work in the area of molecular dynamics simulations, illuminating biological processes and structures in ways that weren’t possible before. His research focused on the structure and function of supramolecular systems in the living cell, and on the development of non-equilibrium statistical mechanical descriptions and efficient computing tools for structural biology. Schulten received his Ph.D. from Harvard University in 1974. At Illinois, he was Swanlund Professor of Physics and was affiliated with the Department of Chemistry as well as with the Center for Biophysics and Computational Biology; he was Director of the Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics as well as Co-Director of the Center for the Physics of Living Cells.

A memorial service and reception was held November 7. The Beckman Institute will host an honorary symposium in 2017.

Highlights of our Work

Highlight: A Molecular Shuttle

bc1 complex embedded in membrane

image size: 1.6MB
made with VMD

Photosynthetic organisms have been optimized by over two billion years of evolution into energy-harvesting machines that surpass the efficiency of man-made solar devices. Employing a network of hundreds of proteins, these organisms transform energy from the incident sunlight into ATP molecules - the universal fuel for sustaining cellular activities. A key step in the conversion of solar energy into ATP involves shuttling of negative charges or electrons between widely separated sites on the cell membrane. This membrane-wide charge transportation is accomplished by the cytochrome c family of proteins. Cytochrome c finds and docks to an electron donor protein, accepts the electron and unbinds as a result of it, and afterwards finds an electron acceptor protein, docks to it to deliver the electron and unbinds to repeat the sequence. Given its ubiquitous role in photosynthesis and respiration, the recognition, binding and unbinding mechanism of cytochrome c have been a focus of intense biochemical investigations over the past three decades. However, little is deciphered on the details of cytochrome c activity. A recent study based on molecular dynamics simulations with NAMD reveals the working principles of cytochrome c in atomic resolution. The calculations suggest that electrostatic forces drive the cytochrome c binding, and enable membrane-wide electron transfer. More about the cytochrome c protein can be found here.

The Future of Biomolecular Modeling

A 2015 TCBG Symposium brought together scientists from across the Midwest to brainstorm about what's on the horizon for computational modeling. See a summary of what these experts foresee. Read more

Computer Modeling in Bionanotechnology-The History

Since 2001 Illinois scientists have innovatively used molecular dynamics to simulate biological molecules combined with nanodevices. It turns out that the computational microscope is the quintessential imaging tool for these bionano systems. By Lisa Pollack. Read more


NAMD 2.12 is releasedVMD 1.9.3 is released


Emad Tajkhorshid, Faculty - Biophysics


  • No seminars in the next 28 days
  • Research

    RSS Feed



    Recent Publications RSS Feed All Publications

    Recent Reviews

    All Reviews

    Highly Cited

    TCB Group