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VMD – “Visual Molecular Dynamics”
• Visualization and analysis of molecular dynamics simulations, 

sequence data, volumetric data, quantum chemistry data, 
particle systems

• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/
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Molecular Orbitals
• Visualization of MOs aids 

in understanding the 
chemistry of molecular 
system

• MO spatial distribution is 
correlated with 
probability density for an 
electron

threonine
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Computing Molecular Orbitals
• Calculation of high 

resolution MO grids can 
require tens to hundreds of 
seconds in existing tools

• Existing tools cache MO 
grids as much as possible 
to avoid recomputation:
– Doesn’t eliminate the wait 

for initial calculation, 
hampers interactivity

– Cached grids consume 
100x-1000x more memory 
than MO coefficients C60
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Animating Molecular Orbitals
• Animation of (classical 

mechanics) molecular 
dynamics trajectories 
provides insight into 
simulation results

• To do the same for QM 
or QM/MM simulations 
one must compute MOs 
at ~10 FPS or more

• >100x speedup (GPU) 
over existing tools now 
makes this possible! C60
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Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid 

Apply user coloring/texturing 
and render the resulting surface 

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index, 
retrieve MO wavefunction coefficients  

One-time 
initialization

For each trj frame, for   
each MO shown
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CUDA Block/Grid Decomposition

Padding optimizes glob. mem 
perf, guaranteeing coalescing

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…
Small 8x8 thread 
blocks afford large 
per-thread register 
count, shared mem.
Threads compute 
one MO lattice 
point each.

…

MO 3-D lattice decomposes into   
2-D slices (CUDA grids)
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MO Kernel for One Grid Point  (Naive C)

Loop over atoms

Loop over shells

Loop over primitives: 
largest component of 
runtime, due to expf()

Loop over angular 
momenta

(unrolled in real code)

…

for (at=0; at<numatoms; at++) {

int prim_counter = atom_basis[at];

calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

int shell_type = shell_symmetry[shell_counter];

for (prim=0; prim < num_prim_per_shell[shell_counter];  prim++) {

float exponent      = basis_array[prim_counter ];

float contract_coeff = basis_array[prim_counter + 1];

contracted_gto += contract_coeff * expf(-exponent*dist2);

prim_counter += 2;

}

for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

int imax = shell_type - j; 

for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;

}

value += tmpshell * contracted_gto;

shell_counter++;

} 

} …..



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Preprocessing of Atoms, Basis Set, and 
Wavefunction Coefficients

• Must make effective use of high bandwidth, low-
latency GPU on-chip memory, or CPU cache:
– Overall storage requirement reduced by eliminating 

duplicate basis set coefficients
– Sorting atoms by element type allows re-use of basis set 

coefficients for subsequent atoms of identical type

• Padding, alignment of arrays guarantees coalesced 
GPU global memory accesses, CPU SSE loads
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GPU Traversal of Atom Type, Basis Set,
Shell Type, and Wavefunction Coefficients

• Loop iterations always access same or consecutive 
array elements for all threads in a thread block:
– Yields good constant memory cache performance
– Increases shared memory tile reuse

Monotonically increasing memory references

Different at each 
timestep, and for   

each MO

Constant for all MOs, 
all timesteps

Strictly sequential memory references
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Use of GPU On-chip Memory
• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!
• For large data, shared memory used as a program-

managed cache, coefficients loaded on-demand:
– Tile data in shared mem is broadcast to 64 threads in a block
– Nested loops traverse multiple coefficient arrays of varying 

length, complicates things significantly…
– Key to performance is to locate tile loading checks outside of 

the two performance-critical inner loops
– Tiles sized large enough to service entire inner loop runs
– Only 27% slower than hardware caching provided by 

constant memory (GT200)
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Coefficient array in GPU global memory

Array tile loaded in GPU shared memory.  Tile size is a power-of-two, 
multiple of coalescing size, and allows simple indexing in inner loops 
(array indices are merely offset for reference within loaded tile).

64-Byte memory 
coalescing block boundaries

Full tile padding

Surrounding data,
unreferenced

by next batch of 
loop iterations
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VMD MO Performance Results for C60
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel Cores/GPUs Runtime (s) Speedup
CPU ICC-SSE 1 46.58 1.00

CPU ICC-SSE 4 11.74 3.97

CPU ICC-SSE-approx** 4 3.76 12.4

CUDA-tiled-shared 1 0.46 100.

CUDA-const-cache 1 0.37 126.

CUDA-const-cache-JIT* 1 0.27 173.
(JIT 40% faster)

C60 basis set 6-31Gd.  We used an unusually-high resolution MO grid for 
accurate timings.  A more typical calculation has 1/8th the grid points.

* Runtime-generated JIT kernel compiled using batch mode CUDA tools
**Reduced-accuracy approximation of expf(),                                    
cannot be used for zero-valued MO isosurfaces
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VMD Orbital Dynamics Proof of Concept
One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel,     
Sun Ultra 24, GeForce GTX 285 

GPU MO grid calc. 0.016 s

CPU surface gen, 
volume gradient, 
and GPU rendering

0.033 s

Total runtime 0.049 s
Frame rate 20 FPS

With GPU speedups over 100x, previously insignificant CPU 
surface gen, gradient calc, and rendering are now 66% of runtime.
Need GPU-accelerated surface gen next…

threonine
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MO Kernel Structure, Opportunity for JIT…
Data-driven, but representative loop trip counts in (…)

Loop over atoms (1 to ~200) {                  

Loop over electron shells for this atom type (1 to ~6) {

Loop over primitive functions for this shell type (1 to ~6) {

}

Loop over angular momenta for this shell type (1 to ~15) {}

}

}

Unpredictable (at compile-time, since data-driven ) but 
small loop trip counts result in significant loop overhead.  
Dynamic kernel generation and JIT compilation can 
eliminate this entirely, resulting in 40% speed boost
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Molecular Orbital Computation and Display Process
Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
using basis set-specific CUDA kernel

Extract isosurface mesh from 3-D MO grid 

Render the resulting surface 

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index, 
retrieve MO wavefunction coefficients  

One-time 
initialization

Generate/compile basis set-specific CUDA kernel

For each trj frame, for   
each MO shown
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….. 

contracted_gto = 1.832937 * expf(-7.868272*dist2);

contracted_gto += 1.405380 * expf(-1.881289*dist2);

contracted_gto += 0.701383 * expf(-0.544249*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 0.187618 * expf(-0.168714*dist2);

// S_SHELL

value += const_wave_f[ifunc++] * contracted_gto;

contracted_gto = 0.217969 * expf(-0.168714*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 3.858403 * expf(-0.800000*dist2);

// D_SHELL

tmpshell = const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

….. 

// loop over the shells belonging to this atom (or basis function)

for (shell=0; shell < maxshell; shell++) {

float contracted_gto = 0.0f;

// Loop over the Gaussian primitives of this contracted

// basis function to build the atomic orbital

int maxprim = const_num_prim_per_shell[shell_counter];

int shell_type = const_shell_symmetry[shell_counter];

for (prim=0; prim < maxprim;  prim++) {

float exponent       = const_basis_array[prim_counter   ];

float contract_coeff = const_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * exp2f(-exponent*dist2);

prim_counter += 2;

}

/* multiply with the appropriate wavefunction coefficient */

float tmpshell=0;

switch (shell_type) {

case S_SHELL:

value += const_wave_f[ifunc++] * contracted_gto;

break;

[…..]

case D_SHELL:

tmpshell += const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

break;

General loop-based 
CUDA kernel

Dynamically-generated 
CUDA kernel (JIT)
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Performance Evaluation:
Molekel, MacMolPlt, and VMD

Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
C60-A C60-B Thr-A Thr-B Kr-A Kr-B

Atoms 60 60 17 17 1 1

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84)

Kernel Cores 
GPUs

Speedup vs. Molekel on 1 CPU core

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0
MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5
VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5
VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5
VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8
VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6
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Future Work
• Tune Multi-GPU implementation to workaround 

small kernel launch delays that adversely impact 
animation speed

• Further development of runtime-generated MO 
kernels using new CUDA JIT compilation APIs

• Multi-pass approach with spatial decomposition and 
distance-based cutoff to truncate rapidly decaying 
exponentials (CPU+GPU cooperation)
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