
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

High Performance Computation and Interactive
Display of Molecular Orbitals on GPUs and

Multi-core CPUs

John Stone
Senior Research Programmer

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
http://www.ks.uiuc.edu/Research/gpu/

Second GPGPU Workshop, March 8, 2009

John Stone, Jan Saam, David Hardy,
Kirby Vandivort, Wen-mei Hwu, Klaus Schulten

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD – “Visual Molecular Dynamics”
• Visualization and analysis of molecular dynamics simulations,

sequence data, volumetric data, quantum chemistry data,
particle systems

• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular Orbitals
• Visualization of MOs aids

in understanding the
chemistry of molecular
system

• MO spatial distribution is
correlated with
probability density for an
electron

threonine

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Computing Molecular Orbitals
• Calculation of high

resolution MO grids can
require tens to hundreds of
seconds in existing tools

• Existing tools cache MO
grids as much as possible
to avoid recomputation:
– Doesn’t eliminate the wait

for initial calculation,
hampers interactivity

– Cached grids consume
100x-1000x more memory
than MO coefficients C60

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Animating Molecular Orbitals
• Animation of (classical

mechanics) molecular
dynamics trajectories
provides insight into
simulation results

• To do the same for QM
or QM/MM simulations
one must compute MOs
at ~10 FPS or more

• >100x speedup (GPU)
over existing tools now
makes this possible! C60

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid

Apply user coloring/texturing
and render the resulting surface

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index,
retrieve MO wavefunction coefficients

One-time
initialization

For each trj frame, for
each MO shown

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA Block/Grid Decomposition

Padding optimizes glob. mem
perf, guaranteeing coalescing

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…
Small 8x8 thread
blocks afford large
per-thread register
count, shared mem.
Threads compute
one MO lattice
point each.

…

MO 3-D lattice decomposes into
2-D slices (CUDA grids)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

MO Kernel for One Grid Point (Naive C)

Loop over atoms

Loop over shells

Loop over primitives:
largest component of
runtime, due to expf()

Loop over angular
momenta

(unrolled in real code)

…

for (at=0; at<numatoms; at++) {

int prim_counter = atom_basis[at];

calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

int shell_type = shell_symmetry[shell_counter];

for (prim=0; prim < num_prim_per_shell[shell_counter]; prim++) {

float exponent = basis_array[prim_counter];

float contract_coeff = basis_array[prim_counter + 1];

contracted_gto += contract_coeff * expf(-exponent*dist2);

prim_counter += 2;

}

for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

int imax = shell_type - j;

for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;

}

value += tmpshell * contracted_gto;

shell_counter++;

}

} …..

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Preprocessing of Atoms, Basis Set, and
Wavefunction Coefficients

• Must make effective use of high bandwidth, low-
latency GPU on-chip memory, or CPU cache:
– Overall storage requirement reduced by eliminating

duplicate basis set coefficients
– Sorting atoms by element type allows re-use of basis set

coefficients for subsequent atoms of identical type

• Padding, alignment of arrays guarantees coalesced
GPU global memory accesses, CPU SSE loads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Traversal of Atom Type, Basis Set,
Shell Type, and Wavefunction Coefficients

• Loop iterations always access same or consecutive
array elements for all threads in a thread block:
– Yields good constant memory cache performance
– Increases shared memory tile reuse

Monotonically increasing memory references

Different at each
timestep, and for

each MO

Constant for all MOs,
all timesteps

Strictly sequential memory references

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Use of GPU On-chip Memory
• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!
• For large data, shared memory used as a program-

managed cache, coefficients loaded on-demand:
– Tile data in shared mem is broadcast to 64 threads in a block
– Nested loops traverse multiple coefficient arrays of varying

length, complicates things significantly…
– Key to performance is to locate tile loading checks outside of

the two performance-critical inner loops
– Tiles sized large enough to service entire inner loop runs
– Only 27% slower than hardware caching provided by

constant memory (GT200)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Coefficient array in GPU global memory

Array tile loaded in GPU shared memory. Tile size is a power-of-two,
multiple of coalescing size, and allows simple indexing in inner loops
(array indices are merely offset for reference within loaded tile).

64-Byte memory
coalescing block boundaries

Full tile padding

Surrounding data,
unreferenced

by next batch of
loop iterations

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD MO Performance Results for C60
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel Cores/GPUs Runtime (s) Speedup
CPU ICC-SSE 1 46.58 1.00

CPU ICC-SSE 4 11.74 3.97

CPU ICC-SSE-approx** 4 3.76 12.4

CUDA-tiled-shared 1 0.46 100.

CUDA-const-cache 1 0.37 126.

CUDA-const-cache-JIT* 1 0.27 173.
(JIT 40% faster)

C60 basis set 6-31Gd. We used an unusually-high resolution MO grid for
accurate timings. A more typical calculation has 1/8th the grid points.

* Runtime-generated JIT kernel compiled using batch mode CUDA tools
**Reduced-accuracy approximation of expf(),
cannot be used for zero-valued MO isosurfaces

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Orbital Dynamics Proof of Concept
One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel,
Sun Ultra 24, GeForce GTX 285

GPU MO grid calc. 0.016 s

CPU surface gen,
volume gradient,
and GPU rendering

0.033 s

Total runtime 0.049 s
Frame rate 20 FPS

With GPU speedups over 100x, previously insignificant CPU
surface gen, gradient calc, and rendering are now 66% of runtime.
Need GPU-accelerated surface gen next…

threonine

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

MO Kernel Structure, Opportunity for JIT…
Data-driven, but representative loop trip counts in (…)

Loop over atoms (1 to ~200) {

Loop over electron shells for this atom type (1 to ~6) {

Loop over primitive functions for this shell type (1 to ~6) {

}

Loop over angular momenta for this shell type (1 to ~15) {}

}

}

Unpredictable (at compile-time, since data-driven) but
small loop trip counts result in significant loop overhead.
Dynamic kernel generation and JIT compilation can
eliminate this entirely, resulting in 40% speed boost

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular Orbital Computation and Display Process
Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
using basis set-specific CUDA kernel

Extract isosurface mesh from 3-D MO grid

Render the resulting surface

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index,
retrieve MO wavefunction coefficients

One-time
initialization

Generate/compile basis set-specific CUDA kernel

For each trj frame, for
each MO shown

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

…..

contracted_gto = 1.832937 * expf(-7.868272*dist2);

contracted_gto += 1.405380 * expf(-1.881289*dist2);

contracted_gto += 0.701383 * expf(-0.544249*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 0.187618 * expf(-0.168714*dist2);

// S_SHELL

value += const_wave_f[ifunc++] * contracted_gto;

contracted_gto = 0.217969 * expf(-0.168714*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 3.858403 * expf(-0.800000*dist2);

// D_SHELL

tmpshell = const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

…..

// loop over the shells belonging to this atom (or basis function)

for (shell=0; shell < maxshell; shell++) {

float contracted_gto = 0.0f;

// Loop over the Gaussian primitives of this contracted

// basis function to build the atomic orbital

int maxprim = const_num_prim_per_shell[shell_counter];

int shell_type = const_shell_symmetry[shell_counter];

for (prim=0; prim < maxprim; prim++) {

float exponent = const_basis_array[prim_counter];

float contract_coeff = const_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * exp2f(-exponent*dist2);

prim_counter += 2;

}

/* multiply with the appropriate wavefunction coefficient */

float tmpshell=0;

switch (shell_type) {

case S_SHELL:

value += const_wave_f[ifunc++] * contracted_gto;

break;

[…..]

case D_SHELL:

tmpshell += const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

break;

General loop-based
CUDA kernel

Dynamically-generated
CUDA kernel (JIT)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Performance Evaluation:
Molekel, MacMolPlt, and VMD

Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
C60-A C60-B Thr-A Thr-B Kr-A Kr-B

Atoms 60 60 17 17 1 1

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84)

Kernel Cores
GPUs

Speedup vs. Molekel on 1 CPU core

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0
MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5
VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5
VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5
VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8
VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Future Work
• Tune Multi-GPU implementation to workaround

small kernel launch delays that adversely impact
animation speed

• Further development of runtime-generated MO
kernels using new CUDA JIT compilation APIs

• Multi-pass approach with spatial decomposition and
distance-based cutoff to truncate rapidly decaying
exponentials (CPU+GPU cooperation)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acknowledgements

• Theoretical and Computational
Biophysics Group, IMPACT group,
University of Illinois at Urbana-
Champaign

• CUDA team at NVIDIA
• NIH support: P41-RR05969

	High Performance Computation and Interactive Display of Molecular Orbitals on GPUs and Multi-core CPUs
	VMD – “Visual Molecular Dynamics”
	Molecular Orbitals
	Computing Molecular Orbitals
	Animating Molecular Orbitals
	Molecular Orbital Computation and Display Process
	CUDA Block/Grid Decomposition
	MO Kernel for One Grid Point (Naive C)
	Preprocessing of Atoms, Basis Set, and �Wavefunction Coefficients
	GPU Traversal of Atom Type, Basis Set,� Shell Type, and Wavefunction Coefficients
	Use of GPU On-chip Memory
	VMD MO Performance Results for C60�Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
	VMD Orbital Dynamics Proof of Concept
	MO Kernel Structure, Opportunity for JIT…�Data-driven, but representative loop trip counts in (…)
	Molecular Orbital Computation and Display Process�Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation
	Performance Evaluation:�Molekel, MacMolPlt, and VMD� Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
	Future Work
	Acknowledgements

