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VMDTAVI sual
A Visualization and analysis of:
I molecular dynamics simulations
I gquantum chemistry calculations
I particle systems and whole cells
I sequence data

A User extensible w/ scripting and pluging==
A http://www.ks.uiuc.edu/Research/vmad/
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_ EI_ectrons in Cellular Tomography,
Vibrating Buckyball Cryo-electron Microscopy

Whole Cell Simulations



GPU Computing

A Commodity devices, omnipresent in modern

computers (over million sold

A Massively parallel hardware,
units,throughput oriented arc

A Standard integer and floating

nerweek
nundreds of processing

nitecture
point types supported

A Programming tools allow software to be written in
dialects of familiar C/C++ and integrated into legacy

software

A GPU algorithms are often multicore friendly due to
attention paid talata locality anddata-parallel

work decomposition
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What Speedups Can GPUs Achieve~”

A SingleGPU speedups dfoxto 30xvs. one
CPU core are common

A Best speedups can reatb0xor more,
attained on codes dominated by floating
point arithmetic, especially native GPU
machine instructions, e.gxpf(), rsqrtf(),é

AA md a h | 6can ptewemt legacy codes
from achieving peak speedups with shallow
GPU acceleration efforts
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CUDA GPU-Accelerated Trajectory
Analysis and Visualization in VMD

GPU-AcceleratedFeature Typical speedup vs.
or Kernel a single CPU core
Molecular orbital display 120x

Radial distribution function 92x

Ray tracing w/ shadows 46X

Electrostatic field calculation 44x

Molecular surface display 40x

lon placement 26X

MDFF density map synthesis 26X
Implicit ligand sampling 25x
Rootmean squared fluctuation  25x

Radius of gyration 21x

Closecontact determination 20x

Dipole moment calculation 15x



Peak Arithmetic Performance:

Theoretical
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Theoretical GB/s

300

Peak Memory Bandwidth: Linear Tren:

270

GeForce GTX TITAN,

240

Tesla K20X

e _ P

e GeForce GPU

210

180

sa=Tesla GPU

GeForce GTX 480 GeForce GTX 680

150

Tesla M2090

120

GeForce GTX 280

Tesla C2050

%0

GeForce 8800 GTX

GeForce 7800 GTX

Sandy Bridge

60

GeForce
30

6800 GT

GeForce FX 59(Q

D_

Woodcrest

Prescott
Harpertuwn

—Horthwood T T T T T T T 1

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013



Comparison of CPU and GPU
Hardware Architecture

CPU: Cache heavy, GPU: ALU heavy,
focused on individual massively parallel,
thread performance throughput oriented
Control ALU ALU m [ [ [T TTTTTTTTTT]
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NVIDIA Kepler GPU

~3-6 GB DRAM Memory w/ ECC

GPC

GPC GPC

GPC

GPC

GPC GPC

GPC

1536KB
Level 2
Cache

AN

Cluster

Graphics Processor

SMX

SMX

AN

Streaming Multiprocessor - SMX

64 KB Constant Cache

64 KB L1 Cache / Shared Memory

48 KB Tex + Readonly Data Cache

sSP SP SP DP
LDST SFU
SP SP SP DP
SP SP SP DP
LDST SFU
| SP 1| SP [ SPIE DRI 1| |
Tex Unit

16 x Execution block =
192 SP, 64 DP,
32 SFU, 32 LDST




What Runs on a GPU?
A GPUs run dataarallel programs called

N\

Nker nel so

A GPUs are managed by a host CPU thread:
I Create a CUDA context
I Allocate/deallocate GPU memory
I Copy data between host and GPU memory
I Launch GPU kernels
Query GPU status
Handle runtime errors

NIH BTRC for Macromolecular Modeling and Bioinformatics Beckman Institute,
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CUDA Stream of Execution

A Host CPU thread CPU GPU
launches a CUDA CPU code

v

Ankernel o, a "meg
copy, etc. on the GPU cPu waits for= =" = = |~ —gmy— -
_ GPU, ideally doing
A GPU action runs to something l
| t- productive W _
compietion CPU code

running

A Host synchronizes
with completed GPU
action
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CUDA Grid/Block/Thread Decomposition

1-D, 2-D, or 3-D

Computational Domain 1-D, 2-D, or 3D (SM >= 2.x)

Grid of thread blocks:

0,0 0,1 é
1,0 1,1 é
1-D, 2-D, 3-D e L , ,
thread block: y © ©

Padding arrays out to fﬂﬂ’ﬁfo’c’:ké“r@ ﬁ
C

optimizes global memory performa
by guaranteeing memory coalesci




CUDA Work Abstractions:

Grids, Thread Blocks, Threads

1-D, 2-D, or 3D (SM >= 2.x)

Thread blocks are Grid of thread blocks:

scheduled onto pool ,
of GPU SMsé o0 o ©

SM / SMX (—— *° °

1-D, 2-D, 3-D
thread block:




An Approach to Writing CUDA Kernels

A Find an algorithm that can exposebstantial parallelism,
we 0| | ulti mately need t hou:

A ldentify appropriate GPU memory or texture subsystems
used to store data used by kernel

A Are there trad®ffs that can be made to exchange
computation fomore parallelism?
I Though counterintuitive, past successes resulted from this strategy
i iBrute forceo methods that exp
surprisingly well on GPUs
A Analyze the reaWorld use case for the problem and select

a specialized kernel for the problem sizes that will be
heavily used

NIH BTRC for Macromolecular Modeling and Bioinformatics Beckman Institute,
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GPUs Require ~20,000 Independent Threads

for Full Utilization, Latency Hidding
Lower - Fl’erf?rnlwalnf:(? vsl, Sizel o |
is better 100 | <
g GPU A
2| |_underutilized - J\ |
c 10 ] X/x/ ]
v E _ / % GPU fully utilized,
2 : 7 ~40x faster than CP
Host thread | - - —— . direct summation, CPU —— |
GPU Cold Start: Loscaennns direct summation, 1 GPU |
context init,
device binding,
kernel PTX JIT: fo01 10000 100000
~110ms Number of atoms

Accelerating molecular modeling applications with graphics process
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulte
J. Comp. Chem28:26182640, 2007.



Getting Performance From GPUSs

ADond6t worry (much) about
operationseat | east unt |

A GPUs provide tremendous memory bandwidth, but ev
so,memory bandwidth often ends up being the
performance limiter

A Keep/reuse data megistersas long as possible

A The main consideration when programming GPUs is
accessing memory efficientlyand storing operands in
themost appropriate memory systenmaccording to data
Size and access pattern

NIH BTRC for Macromolecular Modeling and Bioinformatics Beckman Institute,
http://www.ks.uiuc.edu/ U. lllinois at UrbanaChampaign




GPU Memory Systems

A GPU arithmetic rates dwarf memory bandwidth

A For Kepler K20 hardware:
I ~2 TFLOPS vs. ~250 GB/sec
I The ratio Is roughlyO FLOPS per memory
referencefor singleprecision floating point
A GPUs include multiple fast echip memories to
helpnarrow the gap:
I Registers
I Constant memory (64KB)
I Shared memory (48KB / 16KB)
I Readonly data cache / Texture cache (48KB)

NIH BTRC for Macromolecular Modeling and Bioinformatics Beckman Institute,
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Loop Unrolling, Register Tiling

é for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory- atominfo[atomid].y;
float dysqpdzsq = (dy * dy)“kx atominfo[atomid].z;

float x =atominfo[atomid].x; Compared to nomnrolled
float dx1 = coorxkt X; kernel: memory loads are
float dx2 = coorx2 x: decreased by 4x, and FLORS
per evaluation are reduced, bur
regi ster use

float dx3 = coorx3 Xx;

float dx4 = coorx4 X;

float charge -atominfo[atomid].w
energyvalxl +=harge* rsqrtf(dx1*dx1 + dysqpdzsq);
energyvalx2 +=harge* rsqrtf(dx2*dx2 + dysqpdzsq);
energyvalx3 +=xharge* rsqrtf(dx3*dx3 + dysqpdzsQ);
energyvalx4 +=xharge* rsqrtf(dx4*dx4 + dysqpdzsq);

NIH BTRC for Macromolecular Modeling and Bioinformatics Beckman Institute,
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Avoid Output Conflicts,
Conversion of Scatter to Gather

AMany CPU codes contain
outputs to memory, to reduce arithmetic

A Scattered output can create bottlenecks for GPU
performance due to bank conflicts

AOn the GPU, itoereoften
arithmetic, in exchange for eegularized output
pattern,ortoc o nv er t afgerithagtot er 0O
Nngat bpproaches

NIH BTRC for Macromolecular Modeling and Bioinformatics Beckman Institute,
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Avoid Output Conflicts:

Privatization Schemes
A Privatization use of private work areas for workers
I Avoid/reduce the need for thread synchronization barriers

I Avoid/reduce the need atomic increment/decrement
operations during work, ugmrallel reductionat t he

A By working in separate memory buffers, workers
avoid read/modify/write conflicts of various kinds

A Huge GPU thread counts make it impractical to
privatize data on a pghread basis, so GPUs must use
coarser granularity: warps, thread-blocks

A Use of theon-chip shared memorylocal to each SM
can often be considered a form of privatization

NIH BTRC for Macromolecular Modeling and Bioinformatics Beckman Institute,
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Example: avoiding output conflicts when
summing numbers among threads in a block

Accumulate sums in thread Parallel reduction: no output
local registers before doing any conflicts, LogZ(N) barriers
reduction among threads

m— f_

N-way output conflict: —
Correct results requireostly barrier
synchronizationsor atomic memory —
operations ON EVERY ADD to prevent _
HNEE | ot her

t hreads from overwr|t|||
/

+=

Beckman Institute,

NIH BTRC for Macromolecular Modeling and Bioinformatics
U. lllinois at UrbanaChampaign
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Using the CPU to Optimize GPU Performance

A GPU performs best when the work evenly divides
Into the number of threads/processing units

A Optimization strategy:
i Usethe CPUtG r e g u |the GPWwerkload

IfUse fi xed size bin data s
skipped or producing zeroed out results

I Handle exceptional or irregular work units on the CPU,;
GPU processes the bulk of the work concurrently

I On average, the GPU is kept highly occupied, attaining
a high fraction of peak performance

NIH BTRC for Macromolecular Modeling and Bioinformatics Beckman Institute,
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Science 5: Quantum Chemistry Visualization
A Chemistry is the result of
atoms sharing electrons

AEl ectrons occupy
In the space around atoms

A Calculations for visualizing \
t hese Acloudso ar &“E¢st |

tens to hundreds of e e, GAESR 17
secondon CPUS non-
Interactive

A GPUs enable the dynamics
of electronic structures to be
animatednteractively for
the first time

NIH BTRC for Macromolecular Modeling and Bioinformatics Beckman Institute,
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GPU Solution: Computing & Molecular Orbitals

3-D orbital lattic

millions of points;'Device CPUs, | Runtime Speedup|
~ GPUs |©)
2X Intel X5550SSE | 8 4.13 1
GeForce GTX 480 |1 0.255 16
/ GeForce GTX 480 | 4 0081 |51
Latticetsléces
COmputea on GPU threads
| multiple GPUs = each compute
/ one point
——
: CUDA thread
2-D CUDA arid blocks

on one GPU

http://www.ks.uiuc.edu/
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Molecular Orbital Inner Loop, Hand -Coded x86 SSE
Hard to Regdnd tisislOits t He? fipr

for (shell=0; shell < maxshell; shell++) {

~_m128 Cgto = _mm_setzero_ps();

for (prim=0; prim<num_prim_per_shell[shell _counter]; prim++) {
float exponent =basis_array[prim_counter |;
float contract_coeff = basis_array[prim_counter + 1];
__m128 expval = _mm_mul_ps(_mm_load_psl(&exponent), dist2);
~ m128 ctmp = _mm_mul_ps(_mm_load_ psl(&contract coeff), exp_ps(expval));
Cgto = _mm_add_ps(contracted gto, ctmp);

prim_counter += 2, Writing SSE kernels for CPUs requires
) assembly language, compiler intrinsics
—m128 tshell =_mm_setzero_ps( various libraries, or a really smart
switch (shell_typesishell_counter]) - 3 ytovectorizing compileand lots of luck...
case S_SHELL:

value = _mm_add_ps(value, _mm_mul_ps(_mm_load_psil(&wave_f[ifunc++]), Cgto)); break
case P_SHELL:

tshell = _mm_add_ps(tshell, _mm_mul _ps(_mm_load psl(&wave_f[ifunc++]), xdist));

tshell = _mm_add_ps(tshell, _mm_mul _ps(_mm_load psl(&wave_f[ifunc++]), ydist));

tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load psl(&wave_f[ifunc++]), zdist));

value = _mm_add_ps(value, mm_mul_ps(tshell, Cgto)); break;



Molecular Orbital Inner Loop in CUDA

for (shell=0; shell < maxshell; shell++) {
float contracted_gto = 0.0f;
for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {

float exponent = const_basis_array[prim_counter |,

float contract_coeff = const_basis_array[prim_counter + 1],
contracted gto += contract_coeff * exp2ponent*dist2);
prim_counter += 2;

} \ Aaaaahhhhe
float tmpshell=0; Dataparallel CUDA kernel

switch (const_shell_symmetry[shell_counter]) { looks like normal C code for
case S_SHELL: t he most p

value += const_wave_f[ifunc++] * contracted gto; break
case P_SHELL.:

tmpshell += const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted gto; break;



Performance (ns per day)

NAMD Titan XK7 Performance August 201

NAMD on Titan Cray XK7 (2fs timestep with PME)

NAMD XK7 vs. XE6
Speedup: 3x4x

16

)

HIV-1 Data: ~1.2 TB/day @
4096 XK7 nodes

Biofuels (21M atoms) == _

HIV Capsid (64M atoms) =——gy—
Chromatophore (100M atoms) ==
Ribosome (517 replicas of 320K atoms) —3€—

512 1024 2048 4096 8192 16384
Number of XK7 Nodes




VMD Petascale Visualization and Analysis

A Analyze/visualize large trajectories t
large to transfer ofite:

I Compute timeaveraged electrostatic fielc -
MDFF quality-of-fit, etc.

I Userdefined parallel analysis operations |
data types

i Parallel rendering, movie making

A Parallel I/O rates up 875 GB/semn
8192 Cray XE6 nodéscan read In \
231 TB in 15 minutes! NCSA Blue Waters Hybrid

- : . Cray XE6 / XK7 Supercomputer
A Multi-level dynamic load balancing Y P P

tested with up to 262,144 CPU cores 22040 XE6 CPU nodes
4,224 XK7 nodes w/ GPUSs suppc
A Supports GPUaccelerated Cray fast VMD OpenGL movie

XK7 nodes for both visualization and  rendering and visualization
analysis usage




VMD for Demanding Analysis Tasks
Parallel VMD Analysis w/ MPI

A Compute timeaveraged
electrostatic fields, MDFF

Sequence/Structure Data,
TraJ] ectory F

guality-of-fit, etc.

A Parallel rendering, movie makin

A Userdefined parallel reduction
operations, data types

A Parallel /0 on Blue Waters:
T 109 GB/sec on 512 nodes
T 275 GB/sec on 8,192 nodes

A Timeline per-residue SASA

calc. achieves 800x speedup @

— VMD Dataparallel
analysis in
IRIRVYT VMD |
w/ dynamic

load
— VMD balancing

1000 BW XE®6 nodes

A Supports GPU-accelerated
clusters and supercomputers

A 4

Gathered Resultls




VMD as an Analysis Platform
Over 60 VMD Plugins Developed by Users

A VMD/NAMD sister programs,

VMD is crucial for simulation Molfile Graphical
analysis Slugine Interf_ace
A VMD userextensible scripting w/ Plugins
Tcl/Tk, Python t $ I I 3
A Compiled C/C++ plugins loaded
from shared libraries at runtime via Text
dlopen() Plugins
A 70 molfile plugins provide access to I I
molecular file formats v v v
A Built-in analysis commands Plugin
exploit XE6 multi-core CPUs, Interface Tcl/Tk Python
XK7Tesla K20X GPUs
A New VMD collective ops and
work scheduling interfaces VMD Core
enable existing code to be

parallelized easily

NIH BTRC for Macromolecular Modeling and Bioinformatics Beckman Institute,
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Radial Distribution Function

A RDFs describes how
atom density varies
with distance

A Can be compared with
experiments

A Shape indicates phase s .
of matter: sharp peaks o} {solid
appear for solids, <.k _
smoother for liquids ”

il /. Liquid

NIH BTRC for Macromolecular Modeling and Bioinformatics Beckman Institute,
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Multi-GPU RDF Performance

100 5
A 4 NVIDIA GTX480 :
GPUs 30 to 92x faster _ |
than 4core Intel X555( : o 4 GTAE0
CPU % 103 == 4 C2050
_ Q ] ==6 G200
A Fermi GPUs ~3x faste » | =2 Tesla
. © ©2 Tesla (cc1.0_8192)
than GTZOO GPUS DE' == A-core Intel X5550 @
o . z (w/
l’?]-regrﬁ(r):)HChlp shared < 1 ﬁy6p7e?t|r_1|reglding)
y 5
8 | T | _ @
Solid
E_ = 01| T T TTTTT] T I T TTTTTT T I T TTTTI
— 10000 100000 1000000 10000000
E.:; — — Number of Atoms
On
Fast Analysis of Molecular Dynamics Trajectories
2~ < Liauid with Graphics Processing Units Radial Distribution
] Iqul Functions. B. Levine, J. Stone, and A. Kohlmeyer. 201
04 s & o J. Comp. Physic230(9):35563569, 2011.
/A
’ NIH BTRC for Macromolecular Modeling and Bioinformatics Beckman Institute,
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Time-Averaged Electrostatics Analysis

on EnergykEfficient GPU Cluster

A 1.5 hourjob (CPUs) reduced to
3 min (CPUs+GPU)

A Electrostatics of thousands of
trajectory frames averaged

A Pernode power consumption on .= i - S S
NCSA AACO GPU cl Usiffet &
i CPUsonly: 448 Watthours R
I CPUs+GPUs: 43 Wattours
A GPU Speedu®5.5x

A Power efficiency gainl0.5x

Quantifying the Impact of GPUs on Performance and Energy
Efficiency in HPC Clusters. J. Enos, C. Steffen, J. Fullop, M.

Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J. Phillips.
The Work in Progress in Green Computinp. 3174324, 2010.



Time-Averaged Electrostatics Analysis on
NCSA Blue Waters

NCSA Blue Waters Node Type Secondger trajectory
frame for one compute
node

Cray XE6Compute Node: 9.33

32 CPU cores (2xAMD 6200 CPUSs)

Cray XK6 GPU-accelerated Compute Node: 2.25

16 CPU cores NVIDIA X2090 (Fermi) GPU

Speedugor GPU XK6 nodes vs. CPU XE6 nodes XK6 nodes are 4.15x
faster overall

Tests on XK7 nodes indicatéSM is CPU-boundwith I n pr ogr es:

the Kepler K20X GPU. XK7 nodes 4.3xfaster

Performance is not much faster (yet) than Fermi X2090 overall
Need to move spatial hashing, prolongation,
i nterpolation onto the GF

Preliminary performance for VMD timaveraged electrostatics w/ Multilevel
Summation Method on the NCSA Blue Waters Early Science System

NIH BTRC for Macromolecular Modeling and Bioinformatics Beckman Institute,
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Multilevel Summation on the GPU

AcceleratgShort-range cutoff)and(lattice cutoff )parts

ﬂDerformance profile for O.

5 A map-of potential for 1.5 M aarq . _
Speedup vs. Lattice Volume
Hardware platform is Intel 700 CPU and NVIDIA GTX;8£. /7
Computational steps CPU(s) | w/ GPU (s) Speedup 25 ' L
[ Shortrange cutoff ) 480.07 /A’ﬁ 32.3
3 20 B ) . —+
Longrange anterpolation 0.18 % X -
restriction 0.16 %’ 15 / ) ]
Q. T
, = T GTX 280 (GT200) GPU
prolongation 0.17 t% "‘
interpolation 3.47 St i
Total 533.52 20.21 26.4 0 l L .
\ —/ 125000 46+06 8e+06 1.5e+07

Volume of potential map (Angslroms)
Multilevel summation of electrostatic potentials using graphics
processing units D. Hardy, J. Stone, K. Schulteh.Parallel
Computing 35:164177, 20009.

NIH BTRC for Macromolecular Modeling and Bioinformatics
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VMD nQui ckSurf o Renp

A Displays continuum of structural detail:
I All-atom models
I Coarsegrained models
I Cellular scale models
I Multi-scale models: Alatom + CG, Brownian + Whole Cell

I Smoothly variable between full detail, and reduced resolution
representations of very large complexes

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and
Particle System Trajectories.

M. Krone, J. E. Stone, T. Ertl, K. Schulté&turoVis Short Paperpp. 6771, 2012



VMD nNnQui ckSurfo R

A Uses multicore CPUs and GPU acceleration to enahieoth
real-time animation of MD trajectories

A Lineartime algorithm, scales to millions of particles, as limited
by memory capacity

Satellite Tobacco Mosaic Virus Lattice Cell Simulations



