TCB Publications - Abstract

David E. Tanner, Wen Ma, Zhongzhou Chen, and Klaus Schulten. Theoretical and computational investigation of flagellin translocation and bacterial flagellum growth. Biophysical Journal, 100:2548-2556, 2011. (PMC: 3117181)

TANN2011 The bacterial flagellum is a self-assembling filament, which bacteria use for swimming. It is built from tens of thousands of flagellin monomers in a self-assembly process that involves translocation of the monomers through the flagellar interior, a channel, to the growing tip. Flagellum monomers are pumped into the filament at the base, move unfolded along the channel and then bind to the tip of the filament, thereby extending the growing flagellum. The flagellin translocation process, due to the flagellum maximum length of 20 $\mu$m, is an extreme example of protein transport through channels. Here, we derive a model for flagellin transport through the long confining channel, testing the key assumptions of the model through molecular dynamics simulations that also furnish system parameters needed for quantitative description. Together, mathematical model and molecular dynamics simulations explain why the growth rate of flagellar filaments decays exponentially with filament length and why flagellum growth ceases at a certain maximum length.

Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: PDF (629.1KB), Supplemental Material (528.0KB) - Supplementary PDF, Supplemental Material ( 4.9MB) - Supplementary movie S1, Supplemental Material ( 4.1MB) - Supplementary movie S2, Journal