TCB Publications - Abstract

Mark A. Shifman, Andreas Windemuth, Klaus Schulten, and Perry L. Miller. Molecular dynamics simulation on a network of workstations using a machine-independent parallel programming language. Computers and Biomedical Research, 25:168-180, 1992. (PMC: 2247565)

SHIF92 Molecular dynamics simulations investigate local and global motion in molecules. Several parallel computing approaches have been taken to attack the most computationally expensive phase of molecular simulations, the evaluation of long range interactions. This paper reviews these approaches and develops a straightforward but effective algorithm using the machine-independent parallel programming language, Linda. The algorithm was run both on a shared memory parallel computer and on a network of high performance Unix workstations. Performance benchmarks were performed on both systems using two proteins. This algorithm offers a portable cost-effective alternative for molecular dynamics simulations. In view of the increasing numbers of networked workstations, this approach could help make molecular dynamics simulations more easily accessible to the research community.

Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: PDF (565.2KB)