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Abstract. We present a multiresolution approach to modeling complexes between protein and
DNA that contain looped or coiled DNA. The approach combines a coarse-grained model of the DNA
loop, based on the classical theory of elasticity, with an atom level model of proteins and protein-
DNA interfaces based on molecular dynamics. The coarse-grained DNA description is controlled
through the atom level protein description and vice versa. The feasibility of the resulting multiscale
modeling approach is demonstrated for a protein-DNA complex in which a protein called the E. coli
lac repressor forces DNA into a 76 base pair loop. The required simulation involves 230,000 atoms,
a number that would triple if both protein and DNA loops were described at the atomic level.
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1. Introduction. Computational studies are ideally suited for investigations of
structure, function, and dynamics of biological molecules at the atomic level [23]. The
dramatic growth of computational power makes it feasible to simulate larger systems
for longer timescales: a decade ago the limit was typically simulations of ∼30,000
atoms for ∼200 ps (picoseconds); today simulations cover hundreds of thousands of
atoms for many nanoseconds [63]. Still, due to their size, biomolecular systems of
relevance are often beyond the reach of computational methods like molecular dy-
namics (MD). Examples of such systems [2] are the ribosome (2 · 106 atoms), a
molecular machine, which reads messenger RNA and synthesizes proteins [38]; the
nucleosome (6 · 105 atoms), which packs DNA into a compact structure by winding
it up [56]; the ATPase (5 · 105 atoms), which reversibly converts a membrane po-
tential into chemical energy [16]; virus capsid (∼106 atoms), an icosahedral coat of
typically 240 proteins that encloses viral DNA for release from infected cells and in-
fection of new cells [4]; and the bacterial flagellum (∼107 atoms), a large aggregate of
proteins that propels and reorients swimming bacteria [13]. The size limitations call
for a multiscale approach, in which descriptions of biomolecules are simplified using
coarse-grained models, preferably models capable of furnishing idealized full atomic
level detail when needed. Such coarse-grained models, when applied to all or some of
the simulated volume, can reduce the atom count through MD simulations with rather
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few effective atoms or replace MD with other mathematical descriptions, e.g., contin-
uum theory. The resulting models become computationally more tractable, partially
due to reduced atom count, but mainly due to smoothing built into the coarse-grained
models that accelerates dynamic processes by orders of magnitude (see, e.g., [1]). The
effectiveness of those methodologies was discussed and demonstrated in [53, 5, 35].

We introduce one such multiscale method for the investigation of protein-DNA
complexes where the DNA is looped or coiled. Looped or coiled configurations of
DNA arise often in the regulation of gene expression [42]. Respective protein-DNA
complexes include the nucleosome and regulatory proteins such as the gal and lac
repressors. The lac repressor is a protein of ∼22,000 atoms; a simulation in a suitable
solvent environment involves 230,000 atoms, as detailed below. If the loop that the
lac repressor induces in the bound DNA is included in the system and solvated, the
size of the system triples. The expected slow dynamics of the DNA loop due to strong
coupling of loop and solvent motions would be a further hindrance to computational
descriptions.

Obviously, protein-DNA complexes of ∼700,000 atoms with slow DNA dynamics
suggest themselves for a multiscale approach. A way to accomplish this approach is
by using simplified models of DNA [51, 41]. Due to its one “long” dimension and two
“short” dimensions, DNA can be approximated as a thin rod [8] by means of the theory
of elasticity [65, 58, 47]. Such an approach replaces a full-atom MD simulation with a
continuum (elasticity) theory treatment with vastly accelerated DNA loop dynamics;
in fact, loop relaxation can be assumed to be instantaneous if an equilibrium loop
model is adopted.

In the present paper we outline a multiscale methodology that links a full-atom
MD description applied to a protein with short DNA segments bound to it and a
coarse-grained (continuum) elastic rod model applied to the DNA between these seg-
ments. The multiscale methodology can be used to address fundamental questions
posed by the structure and function of protein-DNA complexes [10]. We apply this
method to the lac repressor-DNA complex.

The lac repressor protein, shown in Figure 1.1, is the most widely known regula-
tory protein and has helped to establish the paradigm of gene control through protein-
DNA interaction [45]. The protein functions as a negative switch which clamps DNA
and induces a loop in a key DNA segment, which contains the promoter for a set
of genes, lacZ, lacY, and lacA, that code for proteins involved in lactose uptake and
metabolism [43, 44]. In the absence of lactose, the protein binds with high specificity
to two 21 bp (base pair) DNA segments called “operators” [34], folding the DNA be-
tween them into a loop [42] (cf. Figure 1.1) and inhibiting the expression of lacZ, lacY,
and lacA. The formation of the loop has been shown to be critical for full repres-
sion [46]. When lactose is present, the repressor dissociates from the DNA, allowing
the transcription of the genes [45]. Studying the dynamics of the lac repressor-DNA
complex is important for a basic understanding of the mechanisms of gene control [52].

Despite extensive studies [45, 55, 44] the mechanical properties of the complex
and its in vivo configuration remain unknown. The crystal structure of the protein
clamped to two short pieces of DNA but without the DNA loop is available [34],
as shown in Figure 1.2. However, the lac repressor is not bound to such disjointed
segments of DNA in the real cell. Rather, it interacts with continuous DNA subject
to forces that result from the formation of the DNA loop. Presently, the geometry of
the loop must be inferred from modeling [8, 9]. The following questions arise: What
is the structure of the DNA loop? How is the structure of the protein optimized for
the role of controlling the DNA? What forces does the DNA exert on the protein?
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Fig. 1.1. The lac repressor protein with full-atom DNA loop. The all-atom structure of the
loop is constructed from the elastic rod description, as explained in section 2.2.4 and Appendix B.

Fig. 1.2. The lac repressor protein. Structure of the lac repressor binding two segments of
DNA, modeled from crystal and nuclear magnetic resonance structures. The terminal base pairs
(tbp’s) of the bound pieces of DNA are highlighted in black.

Are these forces strong enough to alter the configuration of the protein? If so, what
is the in vivo structure of the protein-DNA complex?

In the present work we show by means of a short simulation that the suggested
multiscale methodology can describe the dynamics of the lac repressor-DNA complex.
A detailed investigation of the equilibrium and dynamical properties of the complex
will be presented in a forthcoming publication [64].

2. Multiscale approach to protein-DNA simulations. The multiscale
methodology combines two levels of description: the DNA loop is described by means
of elasticity theory in a continuum representation, and the protein is described by
means of MD at atomic level resolution. Protein MD simulations position the DNA
loop end points; these points then serve as crucial boundary conditions to the elasticity
theory in determining the shape of the corresponding loop. Elasticity theory in turn
determines the forces arising at the end points of the new loop; the forces enter into
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the protein MD simulation closing the cycle. As a result, the elasticity theory descrip-
tion of the DNA loop and the MD calculation of the protein are intertwined through
the exchange of boundary conditions and forces. In this section we present first the
protein MD description, then the DNA elasticity theory description, and, finally, the
linkage between the two descriptions that defines the multiscale methodology.

Before we introduce these descriptions, we note that the MD description and DNA
elasticity theory description are implemented in two different coordinate systems,
shown in Figure 2.1. The MD simulation occurs in the “laboratory coordinate system”
(LCS) that we will denote by unprimed coordinates, e.g., r(s), d̂i. The elasticity
theory description occurs in the “rod coordinate system” (RCS) that we will denote
by primed coordinates, e.g., r′(s), d̂′

i.

Fig. 2.1. Lab coordinate system (LCS) versus rod coordinate system (RCS). The LCS, shown
in the larger box, is the frame of reference describing the MD simulation, defined by the director
basis

{
ê1, ê2, ê3

}
. The RCS has its origin at the location of the terminal base pair (tbp) at r(s = 0).

2.1. Molecular dynamics. MD is a computational method that calculates the
time-dependent behavior of a molecular system at the atomic level [23]. Today, it
represents one of the principal tools in the theoretical study of biological molecules.
The method permits one to include the natural environment of a biomolecular system
by explicitly including water and ions in the simulation [33].

The simulations provide detailed information on the fluctuations and conforma-
tional changes of biopolymers, e.g., proteins and nucleic acids. The MD method is also
used in the refinement of structures obtained from x-ray crystallography and NMR
(nuclear magnetic resonance) spectroscopy. This section introduces the conventional
use of MD. We also explain the treatment given inside the MD simulation to the
DNA segments bound to the protein that define the loop termini.
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2.1.1. Conventional molecular dynamics. This method is based on classical
mechanics and propagates the positions ri and velocities vi of a set of interacting
atoms i = 1, 2, . . . , N in time t by integrating the Newtonian equations of motion,
with each atom being represented as a point of mass mi. A potential energy function
U(R) describes the interaction of all particles in the system in terms of the atomic
positions, described in terms of 3N Cartesian coordinates collected in the vector
R = (r1, r2, . . . , rN ).

The use of Cartesian coordinates rather than internal coordinates leads to efficient
integration of the equations of motion due to a simple form of the inertia terms;
cf. (2.2)–(2.4) and [59].

The potential energy function used in MD simulations is designed to provide a
compromise between accuracy and computational efficiency. The contributions to the
potential energy can be classified as bonded and nonbonded interactions; the former
describe interactions between atoms linked by covalent bonds, including Ubond, which
describes high frequency vibrations along covalent chemical bonds; Uangle, which de-
scribes bending motions between two adjacent bonds; Udihedral, which describes tor-
sional motion around a bond; and Uimproper, which describes the planar orientation of
one atom relative to three others. The nonbonded terms describe interactions between
atoms which are not covalently bonded or atoms separated by three or more covalent
bonds, and include UvdW , the pairwise van der Waals energy, and Uelec, the pairwise
Coulomb energy between charged atoms. The form of the empirical potential energy
function is stated in internal coordinates

U(R) =
∑

bonds,α

kbondα (rα − r0α)2

︸ ︷︷ ︸
Ubond

+
∑

angles,β

kangleβ (θβ − θ0β)2

︸ ︷︷ ︸
Uangle

+
∑

dihedrals,γ

kdihedγ ([1 + cos(nγψγ + δγ)])

︸ ︷︷ ︸
Udihedral

+
∑

impropers,δ

kimpr
δ (φδ − φ0δ)

2

︸ ︷︷ ︸
Uimproper

+
∑
i

∑
i �=j

4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]

︸ ︷︷ ︸
UvdW

+
∑
i

∑
i �=j

qiqj
εrij︸ ︷︷ ︸

Uelec

,(2.1)

where rα is the bond length, r0α the associated equilibrium bond length, and kbondα the
respective bond spring constant; θβ is the angle between two bonds, θ0β the associated

equilibrium bond angle, and kangleβ the respective spring constant for the angle; ψγ is

the angle of rotation around a bond, kdihedγ the rotational spring constant, proportional
to the energy barrier for rotation, and nγ the number of maxima (or minima) in one
full rotation with δγ the angular offset; φδ is the improper torsion angle, φ0δ the

associated equilibrium value, and kimpr
δ the associated angle spring constant. The

van der Waals interaction between atoms i and j is modeled using the Lenard-Jones
6-12 potential, with εij being the depths of the functions contributing to UvdW , the
minima being located at rij = |ri − rj | = σij . The electrostatic contribution Uelect

accounts for interaction between atomic partial charges qi and qj , rij is the separation
between them, i.e., rij = |ri − rj |, ε0 is the permittivity of free space, and ε is the
relative dielectric constant of the medium in which the charges are placed.

The parameters for the force field defined through (2.1), e.g., charges qi, are
obtained by calibration of experimental results and quantum mechanical simulations
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of small model compounds. The energy parameters used in the present study are
those of the CHARMM22 force field [37].

The numerical method used by most MD programs to integrate the equations of
motion is based on the velocity Verlet algorithm [3]. This method provides a direct
solution of the Newtonian equations of motion, where the atomic positions u, i.e.,
u = ri, velocities v, i.e., v = ṙi, and accelerations a, i.e., a = r̈i, are obtained by
discretizing time in units of δt:

ma(t) = −∇U (u(t)) + Fext,(2.2)

v(t + δt) = v(t) +
1

2
[a(t + δt) + a(t)] δt,(2.3)

u(t + δt) = u(t) + v(t)δt +
1

2
a(t)δt2.(2.4)

Here U (u(t)) is the potential energy function defined in (2.1), where only the depen-
dence on one atom’s position u is explicitly stated. Fext is any external force applied
to the respective atom inside the MD calculation. Through U(R), the motions of
atoms are coupled to each other. Excellent introductions to MD can be found in
[3, 23, 33].

The choice of discretization δt, here δt = 1 fs (femtoseconds), is made in order
to properly represent the fastest motion arising in biopolymers, namely, the vibra-
tion of hydrogen atoms along their covalent bonds. This time step is many orders of
magnitude below the timescales of relevant processes in biological cells. The limita-
tions on computer power today permit simulations of ∼107 integration steps, i.e., in
the multinanosecond range. This timescale accessible to MD is too short by a factor
of 103–106 for many important biological processes. This limitation is a key reason
for introducing the multiscale method for the protein-DNA complex; the dynamics
of the loop could not be described on the timescale available to the MD method,
whereas elasticity theory effectively covers larger timescales, as explained in sections
2.2 and 2.3.

The presented multiscale implementation uses the MD program NAMD2 [32],
with applied external forces obtained from the elasticity theory description of the
DNA loop (Figure 1.1). The simulations are described in further detail below.

2.1.2. MD treatment of terminal base pairs. The multiscale method sug-
gested here can be applied only when the termini of the DNA loop are resolved in
a structure of a protein-DNA complex, such that a full-atom MD simulation can in-
clude both the protein and the bound DNA segments as illustrated in Figure 1.2. We
call the last base pair defining the beginning and ending of the loop the “terminal
base pair” (tbp) of the DNA loop. There are two tbp’s, one for each bound DNA
segment, as highlighted in Figure 1.2. In the present application, the structure of
the lac repressor with DNA bound segments, each with 19 bp, is fortunately known
(Figure 1.2). The tbp’s are subject to special treatment inside the MD simulation,
illustrated in Figure 2.2: they are constrained to preserve their planar structure and
are subject to external forces determined by the elasticity theory description of the
DNA loop. Most important, the positions and orientations of the tbp’s define the
boundary conditions for the latter description.

Preserving the tbp plane. Harmonic constraints are introduced in the tbp’s in or-
der to preserve their planar structure. In general, the Watson–Crick hydrogen bonds
at the ends of a DNA segment are easily broken, since there is a strong competition
between water and the exposed base pair atoms for hydrogen bonding in the actual
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Fig. 2.2. Tbp’s. (a) Constraints imposed on the tbp’s to preserve the Watson–Crick structure
for the case of an adenine-thymine (A-T) base pair. Springs were placed between the atoms N3-N1,
O4-N6, O2-C2, and N1-N9, where the first atom name refers to the atom belonging to thymine (T),
and the second to the atom in adenine (A), and assigned a spring constant of k = 100 kcal/mol ·Å2

and equilibrium distances of 2.9 Å, 2.88 Å, 3.71 Å, and 8.97 Å, respectively (distances taken from an
ideal Watson–Crick base pair). (b) Coordinate frame associated with a DNA base pair [48]. (c) Ap-
plication of the strain obtained from the elastic rod theory to the tbp’s during the MD simulation.
The total force is applied to the center of mass of the nonhydrogen atoms in the bases. (d) Applica-
tion of the torque τ obtained from the elastic rod theory to the tbp during the MD simulation. The
total torque is applied to the nonhydrogen atoms in the base, shown in dark gray, excluding the atoms
in the sugars and phosphates, shown in light gray. Each atom is subject to a torque generating force
ηi as depicted in (e). (e) Detail of the application of the total torque, shown for a single atom.

MD simulation. However, it is desirable to mimic DNA continuity at the ends as if the
DNA that forms the loop were present. One can do this by attaching springs to pairs
of atoms in order to constrain their relative distances and preserve the planar config-
uration of a Watson–Crick base pair. The tbp’s in the application presented in this
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work are A-T pairs. Springs were placed between the atoms N3-N1, O4-N6, O2-C2,
and N1-N9, where the first atom name refers to the atom belonging to thymine (T),
and the second to the atom in adenine (A), as shown in Figure 2.2(a). The constraints
for the distances N3-N1, O4-N6, O2-C2, and N1-N9 were assigned a spring constant
k = 100 kcal/mol·Å2 (cf. k ∼ 300 kcal/mol·Å2 for C-C covalent bonds) and equilib-
rium distances of 2.9 Å, 2.88 Å, 3.71 Å, and 8.97 Å, respectively, which correspond
to their distances in the ideal Watson–Crick base pair. A similar treatment can be
adopted for a G-C base pair.

Local coordinate system at a tbp. Each tbp determines the boundary conditions
of the elastic rod model of DNA by defining a coordinate frame, also referred to as
the director basis,

{
d̂1(s), d̂2(s), d̂3(s)

}
, at the location of the base pair, with origin

r(s), according to a general convention [48] introduced below, illustrated in Figure
2.2(b). s is a coordinate along the DNA loop, defined in section 2.2 below. The tbp
defining the beginning of the loop is denoted by a local frame of reference with origin
at

r(0)(2.5)

and director basis {
d̂1(0), d̂2(0), d̂3(0)

}
.(2.6)

Likewise, the tbp defining the end of the loop is denoted by a local frame of reference
with origin at

r(1)(2.7)

and director basis {
d̂1(1), d̂2(1), d̂3(1)

}
.(2.8)

The local frame of reference
{
d̂1, d̂2, d̂3

}
and origin r(s) at a base pair are ob-

tained as follows: First, one chooses the strand of DNA that has the 5′-3′ direction
pointing from the beginning of the rod to the end of the rod. We call this the “defining
strand.” Second, one obtains the director basis. For this purpose, one defines a vector
rC1′−C1′(s) starting at the C1′ atom of the purine (R), i.e., A or G, and ending on
the C1′ atom of the pyrimidine (Y), i.e., C or T

rC1′−C1′(s) = rC1′,R(s) − rC1′,Y (s).(2.9)

d̂1(s) points in the direction of rC1′−C1′(s),

d̂1(s) =
rC1′−C1′(s)

|rC1′−C1′(s)| .(2.10)

d̂3(s) is defined normal to the plane formed by rC1′−C1′(s) and the vector starting at
the pyrimidine’s C1′ atom and ending in the pyrimidine’s C6 atom

rC1′−C6′(s) = rC1′,Y (s) − rC6,Y (s),(2.11)

i.e.,

d̂3(s) = ± rC1′−C6′(s) × rC1′−C1′(s)

|rC1′−C6′(s) × rC1′−C1′(s)| .(2.12)
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The sign of d̂3(s) is chosen such that it points along the 5′-3′ direction of the defining
strand, introduced above. Since the local director basis is an orthogonal right-handed
set, d̂2(s) is defined as

d̂2(s) = ± d̂3(s) × d̂1(s),(2.13)

with the sign equal to that in (2.12). Finally, the origin of the local coordinate frame
of reference is located at

r(s) =
1

2
(rC1′,R(s) + rC1′,Y (s)) +

(
rC1′−C6′(s) · d̂2(s)

)
d̂2(s).(2.14)

The local coordinate systems d̂i(0) and d̂i(1), i = 1, 2, 3, and their respective
origins r(0) and r(1) are obtained following the convention outlined above, with all
vector coordinates given in the LCS.

Application of forces and torques in the tbp. The forces and torques due to the
DNA resisting being forced into a loop are determined by the elastic rod model of
DNA, as further detailed below, and are applied to selected atoms of each tbp, namely,
the nonhydrogen atoms belonging to the bases (Figure 2.2(c)). The sugar and phos-
phate atoms are not subject to the forces. The force applied to each atom is the
sum of the contribution from the total force N and the total torque M acting on the
respective tbp. N and M are defined through their RCS counterparts N′ and M′ in
(2.26) and (2.27), respectively. The stress N due to the DNA loop is applied to the
center of mass of the group of participating atoms

ni =
mi∑
i mi

N,(2.15)

where ni is the contribution of the force N to atom i, mi is the mass of the atom,
and i runs over all the atoms to which the force is applied (Figure 2.2(c)). The total
torque M due to the DNA loop contributes forces ζi to each atom. These forces are
defined through

ζi =
M × ρi∑
i |ρ⊥i|2

(2.16)

with
∑

i ζi = 0, where ρi = ri − 1
Ntbp

∑
i ri is the distance from the atom to the

geometrical center, ri is the atomic position, Ntbp the number of atoms subject to the

force, i.e., the nonhydrogen atoms in the bases, and |ρ⊥i| = |M×ρi|
|M| is the perpendicular

distance from atom i to the axis along which the torque is applied (Figure 2.2(d),(e)).
Equations (2.15) and (2.16) determine the total force

Fext = ni + ζi(2.17)

applied to each atom using (2.2) at every time step of the simulation. The procedure
outlined needs to be applied to each tbp separately.

2.2. Elastic rod model of DNA. In this section we describe the application
of elasticity theory to DNA loops, along with two numerical methods used to obtain
the structure of the protein-bound DNA loop.

Before we start, it is convenient to introduce the RCS, since all quantities in this
section are given in this frame of reference. The RCS is determined by the boundary
conditions of the loop, which are the key determinants of the loop geometry. These
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boundary conditions are given by the tbp’s, as defined in section 2.1.2. According to
Figure 2.1, the elastic rod theory description refers to the RCS frame of reference,
which is different from the LCS system used in the MD simulation. We reiterate that
the vectors in the RCS appear as primed. In the RCS system (cf. Figure 2.1), the
boundary condition at the beginning of the loop is given by a local frame of reference
with origin at

r′(0) = 0(2.18)

and coordinate frame [
d̂′

j(0)
]
k

= δjk,(2.19)

where δjk is the Kronecker delta. One can readily see from Figure 2.1 that the
boundary condition at the loop end then has the origin

r′(1) =
1

l
(r(1) − r(0)) ,(2.20)

and coordinate frame

d̂′
j(1) = O−1d̂j(1),(2.21)

where O−1 is the operator needed to transform the director basis
{
d′1(0), d′2(0), d′3(0)

}
given by (2.19) to

{
d1(0), d2(0), d3(0)

}
defined through (2.5)–(2.14); i.e., O is given

by the orthogonal matrix

O =
(
d̂1(0), d̂2(0), d̂3(0)

)
(2.22)

using an obvious notation. l denotes the length of the DNA loop. Since O furnishes
an orthogonal transformation, it holds that O−1 = OT. The factor l−1 is introduced
to normalize the coordinates in order to simplify the mathematical description, as
explained below.

2.2.1. Formulation of the elastic rod model of DNA. The application of
elasticity theory to DNA is referred to as the elastic rod model of DNA. The model
is based on Kirchhoff’s theory of elasticity [36, 39, 17], which represents DNA as an
elastic rod described through its centerline r′(s) = (x′(s), y′(s), z′(s)). r′(s) is a three-
dimensional curve parametrized by its arclength s, and its cross section, described by
a local coordinate system (director set)

{
d̂′

1(s), d̂′
2(s), d̂′

3(s)
}
. The cross sections

are stacked along the centerline, with their vectors d̂′
1 and d̂′

2 lying in the plane of
the cross section, and the vector d̂′

3 = d̂′
1 × d̂′

2 normal to that plane, i.e., tangential
to r′(s). The geometric features of the elastic rod model are presented in Figure 2.3.
The director set

{
d̂′

1(s), d̂′
2(s), d̂′

3(s)
}

uniquely defines the orientation of the cross
section at each point s along the centerline. In the case of DNA, the centerline of the
rod follows the axis of the DNA helix, and the cross section is defined following [48]
at each Watson–Crick base pair (cf. Figure 2.3(b)) as described in Figure 2.2.

The equations of Kirchhoff’s theory [36] were modified to account for the specific
physical properties of DNA: (i) intrinsic twist to mimic DNA helicity, (ii) electrostatic
charge of the phosphate groups, (iii) bending anisotropy toward the backbone and
grooves, (iv) deformability, and (v) sequence-dependent bend and twist.
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Fig. 2.3. Elastic rod model of DNA. (a) Parametrization of the elastic rod, using the centerline

position vector r′(s) and the director basis defined by the unit vectors d̂′
1(s, ), d̂′

2(s), and d̂′
3(s),

where d̂′
3 = d̂′

1 × d̂′
2. (b) The elastic rod (center tube) fitted to an all-atom structure of DNA.

We consider the DNA to be inextensible and unshearable, imposing

ṙ′ = d̂′
3.(2.23)

In this section the “dotted” derivatives, e.g., in ḟ(s), are taken with respect to the
arclength s, not time. The angular velocity of the local coordinate frame can be
written as

˙̂
d′

i = k′ × d̂′
i,(2.24)

where k′ = {K1,K2,Ω} is the vector of strains and has as components the curvatures
K1(s) and K2(s) and the local twist Ω(s) of the rod around its axis d̂′

3.
1

For a proper description of DNA, the model needs to account for the intrinsic
twist and curvature of DNA. The shape of ideal, straight DNA is helical with 10.4 bp
per helix turn, corresponding to a pitch of 36 Å [14]. Comparing this value to the
commonly accepted value lp = 500 Å [26, 61] for the persistence length of DNA shows
that DNA is tightly twisted. DNA is also known to be intrinsically curved [19] and
twisted depending on its sequence [67, 18, 49]. These effects can be accounted for
by including in the description the intrinsic curvatures κ◦

1,2(s) and twist ω◦(s). The
geometry of the rod can then be defined using deviations of curvature and twist from
the intrinsic values

κ1,2(s) = K1,2(s) − κ◦
1,2(s), ω(s) = Ω(s) − ω◦(s).(2.25)

When the geometry of the rod departs from the intrinsic form, elastic forces N′(s)
and torques M′(s) develop inside the rod:

N′(s) =

3∑
i=1

N ′
i d̂′

i,(2.26)

M′(s) =

3∑
i=1

M ′
i d̂′

i,(2.27)

where N ′
1 and N ′

2 are the shear forces, M ′
1 and M ′

2 the bending moments along the
principal axes, N ′

3 the force of tension (if N ′
3 > 0) or of compression (if N ′

3 < 0) at

1The components of k′ exist in the RCS, yet for clarity will not appear primed.
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the cross section, and M ′
3 the twisting moment. At equilibrium, the elastic forces N′

and torques M′ balance the external forces f ′ and torques g′ at every point s of the
centerline, obeying

Ṅ′ + ḟ ′ = 0,(2.28)

Ṁ′ + ġ′ + ṙ′ × N′ = 0.(2.29)

We adopt the widely used Bernoulli–Euler approximation [36, 39], which assumes
linear dependence of the classic elastic torque on the curvature κ1, κ2 and twist ω:

M′(s) = A1κ1d̂′
1 + A2κ2d̂′

2 + Cωd̂′
3,(2.30)

where A1 and A2 are the bending rigidities along the directions of the groove and
backbone, respectively, and C is the twisting rigidity. The components of the vectors
d̂′

i(s) can be expressed through four Euler parameters or quaternions [39], q′i(s), in
the elastic rod calculation frame of reference:

d̂′
1 = {q′1

2 − q′2
2 − q′3

2
+ q′4

2
, 2(q′1q

′
2 + q′3q

′
4) , 2(q′1q

′
3 − q′2q

′
4)},(2.31)

d̂′
2 = {2(q′1q

′
2 − q′3q

′
4) , −q′1

2
+ q′2

2 − q′3
2

+ q′4
2
, 2(q′2q

′
3 + q′1q

′
4)},(2.32)

d̂′
3 = {2(q′1q

′
3 + q′2q

′
4) , 2(q′2q

′
3 − q′1q

′
4) , −q′1

2 − q′2
2

+ q′3
2

+ q′4
2},(2.33)

and are subject to the constraint

q′1
2

+ q′2
2

+ q′3
2

+ q′4
2

= 1.(2.34)

Use of the Euler parameters avoids the polar singularities that arise when three Euler
angles are used instead and, therefore, these parameters are preferred here.

Equations (2.23) and (2.26)–(2.34) form the basis of the Kirchhoff theory of elastic
rods. We simplify the equations by making all variables dimensionless:

s̄ = s/l, x̄′ = x′/l, ȳ′ = y′/l, z̄′ = z′/l,(2.35)

K̄1,2 = lK1,2, Ω̄ = lΩ,(2.36)

α = A1/C◦, β = A2/C◦, γ = C/C◦,(2.37)

N̄ ′
i = N ′

il
2/C◦, M̄ ′

i = M ′
il/C◦.(2.38)

Here l is the length of the rod and C◦ = 3 ·10−19 erg·cm is the average intrinsic twist.
We can now combine (2.23) and (2.28)–(2.34) into a system of nonlinear differential
equations of 13th order. Here and below, the bars over the variables defined in
(2.35)–(2.38) are dropped for simplicity:

¨((ακ1)) = ˙((2βκ2Ω)) − ˙((γK2ω)) − βκ2Ω̇ + ακ1Ω
2 − γK1ωΩ + K1N

′
3(2.39)

+ Ωġ′2 − ḟ ′
2 − g̈′1,

¨((βκ2)) = − ˙((2ακ1Ω)) + ˙((γK1ω)) + ακ1Ω̇ + βκ2Ω
2 − γK2ωΩ + K2N

′
3(2.40)

− Ωġ′1 + ḟ ′
1 − g̈′2,

˙((γω)) = ακ1K2 − βK1κ2 − ġ′3,(2.41)

Ṅ ′
3 = − ˙((ακ1))K1 − ˙((βκ2))K2 − ˙((γω))Ω − g′1K1 − g′2K2 − g′3Ω − ḟ ′

3,(2.42)

q̇′1 =
1

2
(K1q

′
4 −K2q

′
3 + Ωq′2),(2.43)



MULTISCALE METHOD FOR PROTEIN-DNA COMPLEXES 539

q̇′2 =
1

2
(K1q

′
3 + K2q

′
4 − Ωq′1),(2.44)

q̇′3 =
1

2
(−K1q

′
2 + K2q

′
1 + Ωq′4),(2.45)

q̇′4 =
1

2
(−K1q

′
1 −K2q

′
2 − Ωq′3),(2.46)

ẋ = 2(q′1q
′
3 + q′2q

′
4),(2.47)

ẏ = 2(q′2q
′
3 − q′1q

′
4),(2.48)

ż = −q′1
2 − q′2

2
+ q′3

2
+ q′4

2
.(2.49)

Above we used the notation ˙((f g)) = ḟg + fġ and its generalization. The solutions
to this system correspond to the equilibrium conformations of the elastic rod ap-
proximating a DNA loop. The 13 functions that constitute a solution to the system
(2.39)–(2.49), r′(s), q′1−4(s), κ1,2, κ̇1,2, ω, and N ′

3, describe the geometry of the elas-
tic rod and the distribution of the stress and torques along the rod. The elastic rod
theory neglects the actual dynamics of loop formation. It states directly the shape
of the loop after adjustment to the imposed boundary conditions (2.18)–(2.21), i.e.,
after equilibration.

For DNA, the external forces f ′ and torques g′ introduced in (2.28) and (2.29),
respectively, originate mainly from electrostatic interactions. The inclusion of electro-
statics in the elastic rod model of DNA is considered in Appendix A. If electrostatic
effects are not included in the DNA rod model, the external forces f ′ and torques g′

are neglected in (2.39)–(2.42).
The forces N′ and torques M′ at the boundaries s = 0, 1 can be obtained from

this solution and are communicated to the MD program. The shear forces N ′
1, N

′
2

can be obtained by combining (2.23)–(2.26) and (2.30) with (2.29); taking ġ′ = 0 in
(2.29), one obtains

N ′
1 = −βκ̇2 + (1 − α)κ1ω − ακ1,(2.50)

N ′
2 = ακ̇1 + (1 − β)κ2ω − βκ2.(2.51)

The force of tension or compression N ′
3 results directly from the solution of (2.39)–

(2.49), and the components of the torques M ′
i , i = 1, 2, 3, are directly obtainable from

k′(s) by virtue of (2.30).
Equations (2.39)–(2.49) can be solved for various given boundary conditions, as

explained below. In fact, for proteins that force DNA into loops, (2.39)–(2.49) lead to
a boundary value problem, where the equilibrium geometry of the loop is obtained for
fixed ends of the DNA loop r′(0) and r′(1), and fixed orientation of the cross section
at these ends, given by q′i(0) and q′i(1), i = 1, 2, 3, 4, or equivalently, di(0) and di(1),
i = 1, 2, 3. The quantities r′(0), r′(1) and q′i(0), q′i(1) are known from the all-atom
structure of the DNA bound to the protein (see section 2.1.2).

The differential equations (2.39)–(2.49) for specific boundary conditions might
yield multiple solutions. It is then necessary to consider the solution that minimizes
the elastic energy, since such a solution would be predominantly represented in a
thermodynamic ensemble. The elastic energy of each solution is computed in pro-
portion to the square of the geometric deviation from the reference configuration, in
accordance with the Bernoulli–Euler approximation (2.30)

U =
1

2

∫ l

0

(A1κ
2
1 + A2κ

2
2 + Cω2)ds.(2.52)
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2.2.2. Numerical solution to the elastic rod problem. In order to solve the
system of ordinary differential equations (2.39)–(2.49) of the rod problem, we use the
boundary value problem solver COLNEW [6] which employs a damped quasi-Newton
method to construct the solution to the problem as a set of collocating splines.

The solver needs to be provided with a guess for an approximate solution, and a
parameter or set of parameters is gradually changed in an iterative manner in order
to reach the solution for the system. There are two methods for iteratively finding
the solution for the rod structure depending on the guessed solution provided to the
solver. The two methods are presented in the following sections “Initiation” and
“Continuation.”

We recall at this point that the boundary conditions of the elastic rod problem
are stated in the RCS systems through (2.18)–(2.21).

Initiation. When no information on the structure of the loop is available, the
initial guess consists of a known exact solution r′(s) to the system (2.39)–(2.49) char-
acterized through parameters, e.g., boundary conditions, different from the desired
ones. The desired solution is obtained in several rounds of computing in which the
deviant parameters are adjusted one by one to the correct value. Typically, the initial
guess deviates from the desired solution in terms of boundary position r′(1), orien-
tation d′

i(1), as well as A2/A1, the ratio of the bending rigidities (cf. (2.30)). The
computations can be made in the following order:

1. Translation. A solution with a deviant position r′(1) (defined in (2.20)) is
assumed for the initiation and gradually changed until the position corresponding to
the correct boundary condition is reached.

2. Rotation. The initial solution usually also assumes an incorrect orientation
of the tbp at s = 1, specified by

{
d̂′

1(1), d̂′
2(1), d̂′

3(1)
}
. This local frame is gradually

rotated so that eventually it coincides with the frame imposed by the boundary condi-
tions of the problem. This step is achieved by simultaneously turning the normal d̂′

3

to coincide with the normal of the boundary condition defining base pair and rotation
about this normal in order to align the cross sections (d̂′

1, d̂′
2).

3. Rotation about d̂′
3. The elastic rod model presented here does not permit

one to define the linking number of the loop. Therefore, integral turns about the
normal d̂′

3 yield the same boundary conditions. Rotations by 2π are performed in
order to explore other possible solutions.

4. Anisotropic flexibility. In many polymer physics and DNA biology appli-
cations the bending rigidities, A1 and A2 in (2.30) and (2.52), are assumed to be
isotropic, e.g., A1 = A2 = kBT lp, where kB is Boltzmann’s constant, T is the abso-

lute temperature, and lp = 500 Å is the persistence length of the rod. Similarly, the
twisting rigidity C is defined in terms of a twisting persistence length C = kBT ltwist

using ltwist = 750 Å [26, 61]. The bending persistence length lp used above is defined
only for isotropically bendable rods. However, anisotropic bending rigidities must be
accounted for in order to yield a correct model of DNA. This is evident from the
DNA structure: bending toward the grooves should require less energy than bending
toward the backbone. Therefore, for the present study we assume anisotropic bend-
ing rigidities characterized through µ = A2/A1 = 4 [9]; this value reproduces well
the DNA persistence length in Monte Carlo simulations [50]. The relaxed structure
is described by the intrinsic components κ◦

1,2 = 0 and ω◦ = 34.6◦ per base pair.
Sequence-dependent effects on curvature or twist can be accounted for but are not
included in the application presented here. Solutions for anisotropic bending rigidities
are usually obtained starting from a solution for isotropic rigidities (i.e., A2/A1) and



MULTISCALE METHOD FOR PROTEIN-DNA COMPLEXES 541

gradually adjusting rigidities until the desired µ = A2/A1 ratio is reached.
In a certain sense the initiation construction of the solution to (2.39)–(2.49) re-

flects a relaxation process of a DNA loop from an initial form to the desired final
form. However, no timescale is linked to the process and, in fact, it is assumed that
the desired shape of the DNA loop adjusts itself instantaneously once the boundary
conditions and A2/A1 ratio have been stated. As noted earlier the description adopted
also neglects fluctuations (entropy effect) around the equilibrium solution.

Continuation. When a good guess for the structure is available, the rod calcu-
lation may be performed in a single cycle of iteration. For the case of the multiscale
method, as explained below, this situation applies. We denote the centerline of the
loop by r′(s, k), where k counts the progress of the simulation as specified below. The
solution r′(s, k) at step k is generally a good initial guess for the solution at the next
step k+ δk, since the changes in the boundary conditions, i.e., relative positions r′(1)
and orientation d′

i(1) given by (2.18)–(2.21), are expected to be small during single
steps if chosen appropriately small. The single iteration cycle performs steps 1 and 2
of “Initiation” (see above) simultaneously. Step 3 of “Initiation” is not performed
since it is desirable to keep the topology, i.e., linking number, of the loop unchanged.
Furthermore, the loop determined at step k already accounts for the correct ratio
A2/A1 of bending rigidities; i.e., step 4 of “Initiation” is not necessary. The solution
of the rod calculation using the continuation method at step k + δk then starts from
r′(s, k) and is obtained by providing the solver with the new target boundary condi-
tion r′(1, k + δk), d̂′

i(1, k + δk), obtained from the latest structure of the protein in
the MD simulation, and an initial guess for the solution of the system of equations
given by the elastic rod solution at step k, r′(s, k), that corresponds to boundary
conditions r′(1, k) and d̂′

i(1, k). r′(1) and d̂′
i(1) are then simultaneously changed

iteratively until the desired boundary conditions r′(1, k + δk), d̂′
i(1, k + δk) are met,

yielding a new structure of the loop with geometry described by r(s, k + δk).
The continuation construction reflects the mechanical relaxation of the DNA loop

during a certain period of protein dynamics, chosen below (cf. (2.55)) as 10 ps. The
multiscale method assumes that this relaxation adapting to the new boundary condi-
tions occurs instantaneously. The neglect of the actual dynamics of DNA and solvent
leads to great savings in computing effort—much more than due to mere reduction
in atom count (in the presented example of the lac repressor-DNA complex, from
700,000 to 230,000), as the underlying complex motion involving, in particular, water
molecules and ions is not explicitly described. The simplification comes at the cost of
losing the timescales for the loop dynamics stemming from effects of inertia, friction,
and other factors [7].

2.2.3. Forces and torques. Once a shape of the loop r′(s) has been estab-
lished, one can determine the forces N′(0),N′(1) and torques M′(0),M′(1) at the
loop termini in the RCS frames, according to (2.26)–(2.27), (2.30), and (2.50)–(2.51).
In the LCS system the forces are

N(s) = O−1 N′(s),(2.53)

and the torques are

M(s) = O−1 M′(s),(2.54)

with O given by (2.22). These forces are needed for s = 0 and s = 1 as input for the
MD simulation. We recall the property O−1 = OT.
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2.2.4. Equivalent all-atom models of the DNA loop. An important advan-
tage of the elastic rod model of DNA is that it has the capacity to recover atomistic
detail from the solutions of (2.39)–(2.49), i.e., from the computed equilibrium shapes
of the rod for given boundary conditions. In fact, one can construct a full-atom struc-
ture of the entire protein-DNA complex under study. One such example is presented
in Figure 1.1 for the case of the application presented here, the lac repressor-DNA
complex. The obtained all-atom structures can then be employed for MD simulations
of the whole complex. The steps for creating a full-atom structure of a DNA loop
given a loop geometry are outlined in Appendix B.

2.3. Linking molecular dynamics and elastic rod model. The methods
presented here serve to study proteins that bind to DNA, inducing it to loop or
coil. The proteins, and the DNA segments in direct contact with the protein, are
described by MD, as introduced in section 2.1. The DNA loops formed between the
protein-bound DNA segments are described by the elastic rod model, as introduced
in section 2.2. Here we present the link between these two descriptions.

Figure 2.4 illustrates the system on which the two computations are done in
intertwined steps. The box shown in Figure 2.4 holds the protein, DNA segments
bound to the protein, water, and ions; in the case of the lac repressor-DNA complex
the box includes altogether 230,000 atoms. The molecules in the box are treated
by means of atomic-level MD simulations. From the box emanates the DNA loop
that is treated via elastic rod theory. The coupling of the two descriptions is now
specified.

Fig. 2.4. Multiscale simulation of the lac repressor-DNA complex. The box represents the
system studied by MD, including the modeled full-atom structure of the lac repressor bound to two
19 bp DNA segments, placed in a water box with sodium and chloride ions, for a total of 230,000
atoms. The loop arising from the box represents the DNA loop modeled by means of elasticity theory.
The multiscale method consists in coupling these two methods, as explained in section 2.3.
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The underlying computational strategy of the multiscale method is the following:
The MD program calls the elastic rod calculation every 10,000 integration steps:

10,000 δt = δk.(2.55)

For δt = 1 fs this implies δk = 10 ps. The boundary conditions needed for the elastic
rod calculation, i.e., position r′(1) and orientation d′

i(1), defined through (2.20) and
(2.21), respectively, are provided by the MD simulation of the protein-DNA complex,
as specified by (2.5)–(2.14).

Once the rod calculation has been provided with the boundary conditions, it
needs also to be provided with a guess for the initial solution. For the calculation at
step k, the immediate previous solution r(s, k − δk) of (2.39)–(2.49) is taken as the
initial guess for the rod calculation, and the continuation method is used to obtain a
new solution for the geometry of the rod r(s, k). The forces N and torques M arising
for the loop r(s, k) in the RCS given by (2.26) and (2.27) are then returned to the
MD simulation by converting them into the LCS by means of (2.53) and (2.54) and
then using (2.15)–(2.17) to apply the corresponding forces to the relevant atoms of
each tbp for 10,000 δt, after which a new continuation rod calculation must be made,
initiating the next cycle of the intertwined elastic rod and MD simulations. We recall
that the adaptation of the DNA loop to the protein dynamics within 10 ps intervals
is assumed to be instantaneous.

3. The lac repressor protein and its induced DNA loop. We applied the
multiscale method outlined in section 2 to study the lac repressor-DNA complex.
The lac repressor is a tetrameric protein, with each monomer consisting of 360 amino
acids. It is formed as a “dimer of dimers,” with each dimer consisting of a core and
a DNA binding head group (Figure 1.2). The dimers are associated by a four-helix
bundle at the bottom, adopting a “V-shape” conformation. Crystallographic as well
as NMR structures have been determined for this protein and were recently reviewed
in [11]. None of the available structures describe the loop that the protein induces in
the DNA, due to the difficulty of crystallizing proteins with full DNA loops. The lac
repressor can form loops of 76 bp and 384 bp. In this study we focus on the shorter
loop (Figure 1.1). Since the length of the loop is only half the ∼147 bp corresponding
to the persistence length of DNA [26, 61], enthalpic effects should dominate over
entropic effects and, thus, we may neglect the latter, describing the loop by means of
the theory of elasticity presented in section 2.2.

3.1. Equilibrating the lac repressor protein without the DNA loop. In
order to perform the MD simulation, a full-atom structure of the lac repressor-DNA
complex was needed. The available crystal and NMR structures of the lac repressor
describe only parts of the protein in atomistic detail. For example, the structure by
Lewis et al. [34] contains the full tetramer but no coordinates for the amino acid
side chains. We constructed an all-atom structure of the lac repressor-DNA complex
employing relevant entries from the Protein Data Bank (PDB) [15]. We used the
1LBI structure [34] as a scaffold, to which we aligned two copies of the 1EFA dimer
structure [12], patching the head groups using the 1CJG head group structure [60] and
taking the symmetric DNA segments from the 1LBG head group-DNA structure [34].
A complete description of our construction can be found in [10].2 The obtained model
consists of a full-atom structure of the tetramer bound to symmetric DNA operators,
as shown in Figure 1.2. The new structure does not contain the DNA loop.

2The structure will be made available in a forthcoming publication [64].
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The modeled protein structure did not contain buried water molecules that occur
in vivo. The program DOWSER [28] was used to place a total of 387 water molecules
inside the protein and in external crevices of the protein. The program VMD [31]
was subsequently used to place the protein model in a box of TIP3 water molecules,
with selected water molecules replaced by sodium and chloride ions corresponding to
a total ion concentration of 100 mM. The ions were initially distributed according
to the electrostatic map obtained with the Poisson–Boltzmann solver DelPhi [29].
The resulting system of 230,000 atoms was minimized for 4000 conjugate gradient
steps, then equilibrated using the NAMD2 MD program [32] with the CHARMM22
force fields for the energy parameters [37] for 1.8 ns (nanoseconds) with a 1 fs time
step. The simulation proceeded in the so-called NPT ensemble, i.e., with particle
number N , pressure P , and temperature T being held fixed. The temperature was
fixed at 298.15K and the pressure at 1 atmosphere (NPT ) using the Langevin pis-
ton method [22] with a damping coefficient of 5 ps−1 and a piston period of 100 fs.
The Particle Mesh Ewald (PME) method was used for computing electrostatic forces
without cut-off [20]. The grid spacing was kept below 1 Å, and a fourth order spline
was used for the interpolation, with the long-range part of the electrostatics being
evaluated every fourth step. The van der Waals interactions were cut off at 12 Å via a
switching function starting at 10 Å. Full periodic boundary conditions were imposed.

In a first phase of equilibration, the backbone atoms of the protein and DNA
were harmonically constrained, except for those in the newly built protein regions
connecting the available structures. The constraints were gradually released to allow
for the amino acids in the newly built parts to avoid nonphysical configurations.
During the equilibration the protein backbone showed an average root mean squared
deviation (RMSD) of 1.3 Å with respect to the originally built structure, which is small
compared to the results from typical MD simulations starting from crystal structures,
and implies that the protein is very stable in the predicted structure and that the
equilibration achieved here provides a good starting point for further simulation.

3.2. The DNA loop induced by the lac repressor. The elastic rod model
was used to build structures of the missing loop that connects the DNA segments that
are bound to the lac repressor. The modeled and equilibrated lac repressor structure,
described in section 3.1, contains two protein-bound DNA segments of 19 bp each.
As explained above, the tbp’s (Figure 1.2) are taken as the ends of the elastic rod,
providing the coordinates r(0), r(1) and orientation d̂i(0), d̂i(1), i = 1, 2, 3, of the
boundaries used in the elastic rod calculation.

In the case of the 76 bp loop, the lac repressor binds to two segments of DNA
denoted operators O1 and O3. The sequence of the operators has pseudopalindromic
symmetry (two-fold symmetry broken by the insertion of a central G-C base pair).
This permits orientations of the DNA in each of the head groups in either the 5′-3′ or
3′-5′ direction. Figure 3.2 shows the four possible arrangements of tbp’s that result
for the possible orientations; these arrangements define the boundary conditions for
the rod calculation, and the different topologies of the loop, as suggested in [24].
We use the notation for the orientation of the DNA in the head groups introduced
in [62], where I denotes the 5′-3′ direction pointing toward the protein (inside), and
O the direction away from the other head group (outside). This yields four possible
combinations: II, IO, OI, OO, where the first letter denotes the orientation of the
operator O3 and the second the orientation of the operator O1. In the present study,
the II and OO topologies are equivalent since the model doesn’t presently account for
sequence-dependent curvatures and twist of the DNA loop. The loop structures were
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obtained for all of these sets of boundary conditions, as illustrated in Figure 3.2. In
the following section, we consider only the case IO. The other cases will be briefly
discussed below.

3.2.1. Adding the DNA loop to the lac repressor with IO topology.
Given the structure of the equilibrated protein, but not of the DNA loop, one can
build a structure of the loop using the initiation method described in section 2.2.2
and illustrated in Figure 3.1.

Fig. 3.1. Initiation method for the elastic rod structure of the DNA loop formed by the lac
repressor protein. (a) Initial solution: a closed circular loop. (b) Solution after translation of
the end of the rod to the correct coordinates. (c,c′) The solutions after the second iteration cycle,
rotation of the s = 1 end; solutions are shown for the underwound “U” loop (c) and overwound
“O” loop (c′). (d) Solutions after the third and fourth iteration cycles that include the effect of
anisotropy and electrostatics. Previous solutions are shown in light gray. The protein-bound DNA
segments from the lac repressor crystal structure are shown for reference only; they played no other
role during the iteration cycles than that of providing the boundary conditions.

The starting point is a circular closed elastic loop (r′(0) = r′(1)) shown in Figure
3.1(a), with intrinsic curvature κ◦

1,2 = 0, constant intrinsic twist ω◦ = 34.6◦ per base

pair, constant elastic moduli A1 = A2 = 1
2C, and zero electrostatic charge. At s = 0,

the loop has the trivial correct position r′(0) = 0 and orientation d̂′
i(0) given by (2.19)

(Figure 3.1(a)). In the first step, the value of r′(1) = 0 is changed so that the end of
the rod moves to the terminal base pair in the other head group, corresponding to a
translation by 51.3 Å (Figure 3.1(b)). Subsequently, the local frame at s = 1 is rotated
to meet the orientation of the terminal base pair d̂i(1) (Figure 3.1(c)). Rotations
by 2π about d̂3(1) were performed in order to explore other possible solutions. A
first 2π rotation yielded a new solution, represented in Figure 3.1(c′). This loop is
overwound (O) with respect to the intrinsic twist by an average of 1.32◦ per base pair.
The former solution is underwound (U) by −1.24◦ per base pair. A further rotation
by 2π returns to the first solution. This can be explained through the occurrence of
a self-crossing of the loop during this second rotation; topologically, a rotation by 4π
increases the linking number by 1, while a self-crossing reduces it by 1, returning the
loop to the original solution. Although nonphysical, self-crossings can occur in the
model since volume exclusion is not accounted for.

In the next step, the values of the bending moduli were changed from A1 = A2 =
1
2C (with C = 3 · 10−19 erg·cm) to the values A1 = 4

15C = 0.8 · 10−19 erg·cm and
A2 = 16

15C = 3.2 · 10−19 erg·cm [50].
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The resulting O loop involves an elastic energy of 23.5kBT, while the U loop has
a higher elastic energy of 30.43kBT (cf. the experimental value of 20kBT [30]; we
employed (2.52) in the calculation).3 The elastic stress of the U loop results in forces
of 7.6 pN (picoNewtons) pushing the ends of the DNA (and thus the head groups of
the protein) away from each other. The O loop induces forces of 7.16 pN pointing
toward each other, i.e., in the opposite direction of the forces of the U loop, bringing
the head groups together. In evaluating these forces we employed (2.50)–(2.51), and
the component N3 is directly obtained from the solution of (2.39)–(2.49).

The electrostatic effects on the structure of the DNA loop induced by the lac
repressor-DNA complex are discussed in Appendix A.

3.2.2. Alternative configurations of the DNA loop. We determined also
solutions to the DNA loop for other topologies that the lac repressor may induce, i.e.,
II, IO, OI, OO. The resulting structures are shown in Figure 3.2. The values for the
energies, excess twist, and resulting forces of these structures are given in Table 3.1.

Fig. 3.2. Other topologies of the DNA loop formed by the lac repressor based on orientation of
the operators in the head groups. I denotes the 5′-3′ direction pointing toward the protein (inside),
and O denotes the 5′-3′ direction pointing away from the other head group (outside). Notation is
adopted from [62]. The II and OO topologies are equivalent in our model.

Table 3.1

Energies and end forces of the loops induced by the lac repressor for the different possible
topologies of the loop. I denotes the 5′-3′ direction pointing toward the protein (inside), and O away
from the other head group (outside). Notation is adopted from [62]. ω denotes the twist, as defined
in (2.25), Uelastic is the elastic energy defined in (2.52), UQ is the electrostatic energy in (A.5),
Utotal is the sum of both contributions to the energy as included in (A.4), and N(s) is the magnitude
of the forces at the end points of the DNA loop (s = 0, 1) arising from the elastic rod calculation
(cf. (2.28)). For each topology, two solutions, labeled a and b, are characterized.

Topology ω Uelastic UQ Utotal N(s = 0) N(s = 1)
(deg/bp) (kBT) (kBT) (kBT) (pN) (pN)

IO a −1.24 23.52 0.05 23.57 7.71 7.73
IO b 1.32 30.62 0.42 31.04 7.64 6.72
II a −1.25 23.32 0.07 23.39 6.47 6.54
II b 1.15 19.29 0.05 19.34 5.58 5.6
OO a −1.00 19.42 0.03 19.45 5.03 5.05
OO b 1.01 22.74 0.03 22.78 6.87 6.86
OI a −0.23 41.62 0.16 41.79 7.88 8.22
OI b −0.04 27.03 0.04 27.07 6.57 6.62

3The difference between energy values in [9] and those reported here is due to the MD equilibra-
tion of the lac repressor structure performed here.



MULTISCALE METHOD FOR PROTEIN-DNA COMPLEXES 547

The orientation of binding of the lac repressor to the operators has been assumed
by many authors to be of the IO kind; see, e.g., [34, 21]. Friedman, Fischmann, and
Steitz introduced the “wrapping away” loop [24], which corresponds to II and OO
loops. At physiological salt concentrations, these loops have energies comparable to
that of the IO loop and to the experimental value, and thus should also be counted
among possible in vivo configurations of the loop. The IO, II, and OO boundary
conditions all show an underwound (U) and an overwound (O) solution (Figure 3.2).
The underwound solution yields lower energy for the II and IO loops, whereas the
overwound solution yields lower energy for the OO loops. The OI boundary condition
yields two underwound loops. One of these loops involves overlap with the lac repres-
sor protein and, thus, should be discarded. It is possible that this configuration of the
loop would wrap around the protein if the looping DNA segment was longer, as in
the “wrapping towards” model introduced by Friedman, Fischmann, and Steitz [24].

3.3. Turning on the loop-protein interaction: The multiscale applica-
tion. The multiscale simulation for the lac repressor-DNA complex was performed
using the IO loop with the U topology. Here, we present the results for 1 ns of
simulation, which demonstrate the feasibility of the multiscale method for studying
protein-DNA complexes.

During the simulation time, the overall structure of the protein remained stable.
Here and henceforth, all RMSD values are reported for the backbone atoms with
respect to the equilibrated structure. The protein showed an average RMSD of 1.7 Å,
a small value for MD simulations of proteins. We analyzed different regions of the
protein for structural distortion due to the application of the forces. The core of the
protein keeps its structural features and remains in the V-like configuration, with an
average RMSD of 1.3 Å. The overall structure of the head groups is also preserved,
with an average RMSD of 1.4 Å. The protein-bound DNA maintains its structure as
well as its contacts with the protein. The stability of the protein during the simulation
shows that the multiscale simulation is capable of describing equilibrium behavior of
the protein and suggests that the observed crystal and NMR structures of the lac
repressor (1LBI [34], 1EFA [12], 1CJG [60], and 1LBG [34]) are relevant, despite the
missing DNA loops.

The difference between the RMSD of the overall structure and the individual com-
ponents of the protein suggests relative motions between its parts (cf. Figure 3.3). The
flexible linker regions that connect the core of the protein to the head groups have
been proposed to permit high mobility of the latter [24, 34]. This was confirmed,

Fig. 3.3. RMSD of the lac repressor structure during the multiscale simulation. Black repre-
sents the core of the protein, dark gray one of the head groups, and light gray the whole protein.
RMSD is taken with respect to the equilibrated structure.
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as relative motions were found to occur between the head groups and the core. The
change in the structure of the protein observed in the simulation suggests that, al-
though the protein is very stable, there is a tendency for the head groups to move
in the direction of the forces. Possibly, the lac repressor-DNA complex reaches its
equilibrium configuration on a longer timescale than covered in the present simula-
tion. A longer multiscale simulation of the complex will be presented in a forthcoming
publication [64].

4. Conclusion and outlook. A general multiscale methodology for studying
biopolymers in their environment is unlikely to materialize. For the broad range of
biomaterials, as well as the wide length and timescales covered by cell processes, each
class of problems will require a specific physical model with a specific computational
framework [27]. A multiscale methodology for simulating protein-DNA complexes that
include looped or coiled DNA is presented here. An example of a cellular mechanism
that involves DNA loop formation is gene control. Interestingly, it has been proposed
that the mechanics of the processes involved in gene control are shared by all proteins
acting on DNA [45]. Therefore, the methodology presented here permits access to
wider studies of protein-DNA interaction.

The elastic rod model used for the multiscale methodology provides a universal
description of DNA properties and interactions [10]. In our present treatment, elec-
trostatic interactions of DNA in the loop were disregarded. However, these properties
may be important for the structure of the DNA loop and should be carefully consid-
ered on a case-by-case basis in future treatment. The multiscale model can be further
extended, to account for the dynamics of the DNA loops, through implementing a
Brownian dynamics model of DNA, as discussed in [7].

Another important aspect of the multiscale methodology is that it has the capacity
to recover atomistic detail from the elastic rod calculations; i.e., one can obtain a full-
atom structure of the entire protein-DNA complex, as mentioned in section 2.2.4
and outlined in Appendix B. The obtained structures can be employed in future
MD simulations. Moreover, protein-DNA aggregates consisting of more than two
macromolecules can be modeled. For example, in the case of the lac repressor-DNA
complex, a second protein, CAP, is known to bind to the lac repressor-DNA complex.
An MD simulation of the ternary lac repressor-CAP-DNA complex can be performed
starting from a description furnished by the elastic rod model as described in [10].
Alternatively, one could perform a multiscale simulation of the ternary complex by
combining an all-atom simulation of the lac repressor-DNA complex and one of the
CAP-DNA complex, connected by the elastic rod model description of the rest of the
loop. This can be extended to large protein-DNA aggregates where multiple proteins
act at far locations on the same DNA loop, as is the case in gene repression, gene
transcription, DNA replication, and DNA packing, processes in which the size of the
system and long timescales do not permit full-atom simulations.

The suggested multiscale method was successfully applied to a landmark sys-
tem in modern biology, the lac repressor-DNA complex. The simulation on the lac
repressor-DNA complex suggests mobile head groups and a stable protein core. On
the timescale of the simulation, a significant change in overall structure was not ob-
served. A longer multiscale simulation of the lac repressor-DNA complex can identify
the key mechanical degrees of freedom of the protein. The structure of the lac re-
pressor suggests potential candidates: the bottom helix bundle is thought to act as
a hinge, since it is attached to the core parts of the protein by flexible linkers. Ex-
perimental data suggests that the protein can undergo a change from the V-shape to
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an open conformation [57], not observed so far in the simulation. The DNA binding
head groups are also connected to the core of the protein by flexible linker regions.
Predicted flexibility of these groups in response to an elastic strain of DNA has been
confirmed by the simulation. To what extent these play a role in repression and why
the molecule is designed in this way are some of the issues that will be addressed in
a forthcoming publication [64].

Appendix A. Electrostatics of the DNA elastic rod model. In this ap-
pendix we consider electrostatic contributions in the framework of the DNA theory of
elasticity. We first introduce the implementation of electrostatics in the theory and
subsequently discuss the electrostatic effects for the lac repressor-DNA complex in
particular.

A.1. Changes to the equations of elasticity. Electrostatic interactions cause
external forces f ′ and torques g′ to arise in DNA (see (2.28) and (2.29)). These forces
and torques originate from self-repulsion of the rod, since DNA holds a negative
charge in every phosphate of its backbone, and from electrostatic effects arising from
the interaction with other charged bodies (e.g., proteins). The electrostatic forces are
described by

ḟ ′Q(s) = σ(s)E′(r′(s)),(A.1)

where σ(s) is the electrostatic charge density of the rod and E′ is the electrostatic
field computed using the Debye screening formula

E′(r′(s)) =
1

4πεε◦

(∑
i

qi∇
exp(−|r′(s) − R′

i|/λ)

|r′(s) − R′
i|

+ 2eχ
∑
j

′ ∇ exp(−|r′(s) − r′(sj)|/λ)

|r′(s) − r′(sj)|

)
.(A.2)

Here the first term describes the interaction of the rod with other charges present in
the system, and the second term originates from the self-interaction of the rod, the
term s = sj excluded from the sum; λ = 3Å/

√
cs is the Debye screening length in an

aqueous solution of monovalent electrolytes of molar concentration cs at 25◦C [40], ε◦
is the vacuum dielectric constant, ε = 80 the dielectric permittivity of water, R′

i the
location of an external charge qi, and 2eχ represents the electrostatic charge of each
DNA phosphate located at r′(sj), with susceptibility χ = 0.25, a value observed for
a broad range of salt concentrations [40].

In our calculations we used the electrostatic charge density

σ(s) =
8

3
QDNA sin4 (πsNDNA) ,(A.3)

where NDNA is the number of bp and QDNA is the total charge of the DNA loop
corrected for the counterion condensation, yielding QDNA = 2eχNDNA.

When the electrostatic force term f ′Q in (A.1) is included in (2.28), the solution
describing the rod geometry needs to minimize the new energy functional

U = Uelastic +
(
UQ − UQ(relaxed)

)
,(A.4)

where Uelastic is the elastic energy in (2.52), UQ is the electrostatic energy of the loop,
and UQ(relaxed) the electrostatic energy of the relaxed form of the loop, i.e., a “ground
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state” energy of the DNA segment. The electrostatic energy is computed as

UQ =
1

4πεε◦

∫ 1

0

σ(s)

(∑
i

qi
exp(−|r′(s) − R′

i|/λ)

|r′(s) − R′
i|

+ 2eχ
∑
j

′ exp(−|r′(s) − r′(sj)|/λ)

|r′(s) − r′(sj)|

)
ds.(A.5)

The computation of electrostatic forces can be done for the interaction of the loop
with itself as well as with the DNA phosphates in the all-atom structure. This results
in the system of equations becoming integrodifferential [10, 66], necessitating the use
of a computationally more expensive algorithm in which each step of the iteration
cycle becomes its own iterative subcycle. It is desirable to exclude this calculation
in order to significantly save computer time. The choice of inclusion of electrostatic
effects must be made on a case-by-case basis. In general, for ionic concentrations in
the range of physiological conditions (50–150 mM NaCl), the solutions are practically
indistinguishable from those obtained without electrostatics. The choice of whether or
not to include electrostatic contributions depends mainly on the structure of the loop;
e.g., in the case of a near self-crossing, the resulting electrostatic self-repulsion contri-
bution actually dominates over bending and twisting energies. A detailed discussion
of the effect of electrostatics is found in [9].

A.2. Changes to the numerical algorithm. The electrostatic interactions
are introduced in a separate iteration cycle for the solutions of the loop geometry.
The deviant parameter in this case is the “electrostatic weight” wE , which defines the
strength of the electric field through Ei = wEE, where E is the desired electric field,
and wE grows linearly from 0 to 1. Each step of this iteration cycle becomes its own
iterative subcycle. The electric field Ei is computed at the beginning of the subcycle
and the equations are solved obtaining the external force f ′ from this value of the
constant electric field. The field is then recomputed for the new geometry of the loop.
Then the cycle starts again with the equations being solved for this new field, until
convergence of the rod to a permanent geometry (and, consequently, of the field to a
permanent value) is realized. The weight wE is kept constant throughout a subcycle.

A.3. Electrostatic effects on the loop induced by the lac repressor.
The physiological ionic concentration of 100 mM NaCl was assumed for a test of
electrostatic effects. The external charges in (A.2) were taken from the coordinates
of the phosphates of the protein-bound DNA segments in the all-atom structure.

IO topology. For the U loop, the computed energy becomes 23.52kBT and the
new forces are asymmetric and have values of 7.71 and 7.73 pN (Figure 3.1(d)). For
the O loop, the total energy is 30.62kBT and forces of 7.64 and 6.72 pN arise. Note
that the U loop presents changes of 0.2% in energy and an average 0.8% change on the
forces. For the O loop, the energy and forces change by 1.4% and 6.0%, respectively.
This difference can be explained by the structures of the loops. The U loop has a
planar structure and, thus, it is far enough from “itself” that the electrostatic force
of self-repulsion is screened by the ions. In the case of the O loop, the form of the
loop (Figure 3.1(c′),(d′)) shows that the DNA is approaching contact and, thus, self-
repulsion is expected. Nevertheless, for both contributions the change is small. For
higher values of salt concentrations, the effect of electrostatics becomes even smaller.
We performed a detailed study of the effect of electrostatics in the loops formed by
the lac repressor [9]. From the results we conclude that for the implementation of the
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multiscale method to the lac repressor, the electrostatic contribution to the energy
may be neglected, significantly speeding the rod computations.

Other topologies of the loop. The results in Table 3.1 show that the electrostatic
contribution to the total energy at 100 mM NaCl is very small, resulting in very
small changes in the structure of the loop and forces exerted on the protein. Thus,
electrostatic effects may be neglected for the case of the lac repressor-DNA complex,
regardless of the choice of boundary conditions.

Appendix B. Building full-atom structures of DNA loops. An important
advantage of the elastic rod model described above is that an idealized crystallographic
structure can be assigned to any calculated DNA loop geometry (cf. Figure 2.3(b)).
Combining this with the full-atom model of the protein, one can build full-atom
models of the protein-DNA complex and potentially employ these models in full-
atom simulations. The algorithm for recovering full-atom detail from the elastic rod
model is the following: (i) Build ideal bp with Quanta [54] and obtain the local frame
of reference di,bp as explained in section 2.1.2; (ii) place one such ideal base pair
at each cross section sj along the centerline of the rod solution, according to the
desired sequence, centering it at r(sj) and aligning it to the local frame of reference
di(sj); (iii) build phosphodiester bonds between bp (this can be efficiently done using
a molecule structure builder package, e.g., the psfgen plugin of VMD4); (iv) minimize
the built ideal DNA structure to avoid bad contacts and optimize topologies, using
the Auto-IMD [25] feature of NAMD with the CHARMM22 force field [37].
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