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Association reactions involving diffusion in one, two, and three-dimensional finite domains governed by
Smoluchowski-type equations (e.g., interchain reaction of macromolecules, ligand binding to receptors,
repressor—operator association of DNA strand) are shown to be often well described by first-order
kinetics and characterized by an average reaction (passage) time 7. An inhomogeneous differential
equation is derived which, for problems with high symmetry, yields 7 by simple quadrature without taking
recourse to detailed cumbersome time-dependent solutions of the original Smoluchowski equation. The
cases of diffusion and nondiffusion controlled processes are included in the treatment. For reaction
processes involving free diffusion and intramolecular chain motion, the valndlty of the passage time

approximation is analyzed.

.- INTRODUCTION

There are a variety of problems in chemical physics
and biophysics where one wishes to calculate the average
time 7 required for a particle, generated at some point
and diffusing under the influence of a potential, to reach
and be bound to a certain target. For example consider
the diffusion controlled interchain reaction of a polymer
with two reactive groups attached, say at the ends, =3
The simplest description of the dynamics of the end-
to-end distance of the polymer is to liken its time de-
velopment to a diffusion under the influence of a poten-
tial (e.g., the harmonic spring model). Assuming that
the reaction occurs with a certain rate whenever the
ends are sufficiently close, one would typically like to
know the fraction of unreacted molecules at time ¢ and
the average time needed for the ends to collide for the
first time. Related well-known problems in biophysics
include the work of Adams and Delbriick, * who studied
the variation of the first passage time with dimension
of the diffusion space in their analysis of the diffusion of
ligand binding to receptor molecules, More recently,
Karplus and Weaver in their model for protein folding®
have developed estimates of the average time it takes
two microdomains of a polypeptide chain to coalesce.

In this paper we develop a method which yields the
average reaction time 7 by simple quadrature for dif-
fusion processes in a force field governed by a
Smoluchowski-type diffusion equation with a space-
dependent diffusion constant. The desired reaction time
T is related to the probability Z(¢) that a system is still
unreacted at time ¢ in that one presupposes the approxi-
mation

Z{) % T pprox (t) =exp(-/7) , (1.1)
i.e., a single expoagﬁtial decay of Z(t). Approximation
(1.1) is equivalent to the definition of T most commonly
stated

=fo° atse) . (1.2a)
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Z() in turn is related to the distribution p(r, ) of find-
ing the system at position r at time #:

z@) = f drp(r, t), - (1.3a)
where the integral extends over the whole diffusion space.
p(r, t) is to obey the Smoluchowski equation

(r, )=V jr, 8), (1.4)

2
o ?
ik, 1) =D{)plr, t)+3p(r, t)vUe)],
where j(r, £) is the corresponding flux, D(r) is the posi-
tion dependent diffusion coefficient and U(r) the inter-
action potential. For the sake of simplicity we assume

that the system has spherical symmetry. The reader
may note that Eq. (1.4) i of the Focker—Planck type,

Although p(r, t) is not explicifly needed for the cal-
culation of 7, we need to discuss its properties as it is
through Eq. (1.4) that the reaction behavior of the sys-
tem énters. To describe the ring closure reaction of
polymer or the absorption of a particle, one imposes the

“radiation” boundary condition at » =a:

jla, t)=kpla, t),

where « is a microscopic rate constant which is a mea-
sure of the effectiveness of the reaction at trapping the
particle, If a reaction occurs whenever the particle
reaches a(k—~ =), this reduces to the so- called
Smoluchowski boundary condition

pla, t)=0. _
We enclose our system and prevent any particles from

1.5)

(1.6)

~escaping to infinity by erecting a reflective barrier at

r=R:
jR, t)=0. 1.7

The solution of Eq. (1.4) subject to the above boundary
conditions for a 6-function initial condition, i.e.,

p(r, 0)=8(r —ry), is the Green’s function or the condi-
tional probability p(r, ¢/r,, 0) that if the particle (we
will use “particle” terminology from now on, also when
the end-to-end distance is meant) was at ro at £ =0, it
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will be at r at time {. The probability that a particle
initially at ro has not been absorbed at time ¢ is denoted
by Z(ro, t) and is given by

(rg, 1) = drp(r, ¢/rg, 0) . (1.3b)
a<r<R
The average time required for absorption is
eo)= [ arz, 1), ' (1.2b)
0

Often the situation arises that a system is made re-
active, i.e., k#0, at times {=0, but is unreactive,
i.e., k=0, for t<0. At<0, Eq. (1.4) then describes
the relaxation of p(r, ) to the equilibrium or steady-
state solution (three-dimensional case)

bea(r) =cr?exp[- pUM)],

where ¢ is a normalization constant. The probability
that a particle starting from the equilibrium distribu-
tion pe(r) is still in the system at time £>0 is [ p, (r)
assumed normalized on the interval a = =R]

$@) = f  dopa(roZ(Eo, 1)
agryS

(1.8)

- j f  drdrope(solp(r, 1/73, 0) (1.9)
a<r,rgS

and the corresponding average time for absorption is

r= [ dropalre) Ting) = j aze) . (1.10)
asrop<R 0

- When the boundary conditions, interaction potential,
and the diffusion coefficient depend on a single co-
ordinate in an arbitrary orthogonal curvilinear co-
ordinate system (e.g., in situations of spherical sym-
metry), the evaluation of 7 can be reduced to a simple
quadrature. For free diffusion, the resulting integrals
are elementary, and simple closed expressions for
T{re) and 7 can, in fact, be obtained. The first passage
time theory®” addresses the case of the Smoluchowski
boundary condition for which every encounter at r =a
leads to reaction, making 7(r,) the average time re-
quired to reach 7 =a for the first time starting from
r =7g. This theory shows for one-dimensional systems
how one can determine 7(ry) and 7 without ever obtaining

p(r, t/ro, 0)-

The purpose of this paper is fourfold. First, we show
that the existing theory is easily generalized to incor-
porate radiation boundary conditions and to handle prob-
lems of higher spatial dimensionality. ‘In the case of
radiation boundary conditions, the particle can reach
¥ =a many times before being absorbed. Thus, the
name first passage time is no longer appropriate and we
use average passage time instead. Second, we obtain
several new exactresultsfor the averagepassagetimeofa
particleundergoing free diffusion and diffusioninaharmon-
ie potential which reduceincertainlimits to approximate
expressions obtained previously by more cumbersome
methods. Third, we investigate how the entire time
course of the reaction, i.e., Z(), is approximated by
Eq. (1.1). For this purpose the Smoluchowski equation
is solved numerically by an algorithm described in de-
tail elsewhere, ® Finally, we extend the first passage
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time treatment to obtain the area under autocorrelation
functions for processes governed by the Smoluchowski
diffusion equation.

The outline of this paper is as follows: In Sec. II we
derive 7(ry) and 7 (as well as the area under autocorrela-
tion functions) as integrals over p(r) for a d-dimension-
al system with spherical symmetry. In Sec. III we obtain
simple closed expressions for 7for free diffusion in one,
two, and three dimensions, and compare Z(¢) calculated
exactly and approximated by Eq. (1.1). Finally, in
Sec. IV we consider the ring closure reaction of polymers
in the framework of the harmonic spring model using
also potentials which mimic excluded volume effects.

H. THEORY

The Smoluchowski equation (1.4) can be rewritten as

57 P, /20, 0) =L@, t/2, 0), (2.1)
where
L{(r)=V - D(r)V+BV- D(r)(VU) . (2.2)

Instead of solving this equation for p(r, t/1y, 0) and then
integrating over r to obtain Z(ry, ) [see Eq. (1.3b)]

we will derive a differential equation which determines
Z(ro, t) directly. However, as the boundary conditions
to describe reactive systems are given for Eq. (2.1), we
need to consider initially the distribution function p(r,
t/ry, 0) to derive the appropriate boundary conditions for

‘ E(ro, _t)_and T(ry). _

For this pui‘pose we consider the adjoint equation® to °
Eq. (2.1):

a +*

7 P 1/%0, 0) =L (o) 27, t/70, 0) (2.3)
which holds for the adjoint diffusion operator

L*(ro) =V - D(r)V - BD(x)(VV) - V (2.4)
and the adjoint boundary conditions given below. For a

formal derivation of Eq. (2.3) we start from the solu-
tion of Eq. (2.1):

plx, t/r, 0) = J; dr's(r —r")exp[tL ()] 6(r" - 1) .

(2.5)

We have used the symbol V as a remainder that the in-
tegration is over a <7 <R, For some functions «(r) and
v(r) one has

vLu—ul*v =v. Plu, v], (2.6a)
where .
Plu, v]=vDVu - uDVv + BD(VU) uv (2.6b)

is the bilinear concomitant of L. Since P[5(r -1'),
§(r’ —ro)] for r and ry inside V vanishes on the surface
of V, we can rewrite Eq. (2.5) as

ple, 1/r,, 0) = J;dr'ﬁ(r' ~ro) expliL* & )] 6(r - 1) .

Differentiation of this equation with respect to f yields
Eq. (2.3). Equation (2.3) has to be complemented, how-
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ever, by boundary conditions which guarantee P to tive boundary condition at » =R, i.e., k=0, imply

vanish on the boundary of V. This requires Eq, (2.6b) d o

to vanish on the surface of V. If we identify « and » with [d—— r(ro)] = TK) 7a), (2. 14a)

the solutions of Egs. (2.1) and (2.3), respectively, we 7o rpa Pl : :

require in the case of the Smoluchowski boundary con- - [4 T0ro) =0 (2. 14b)

dition (1.6), u(a)=0, that v(a) =0, i.e., [D@)#0], [d r°],0=R"- : :
p(r, t/10,0)=0, ro=a. ‘ 2.7 Since Eq. (2.13) represents a first-order inhomo-

In the case of the radiation boundary condition (1.5), geneous differential equation for d7/dr,, it is easily

Vu +B(VU)u =[x/D(a)]u, we have Vo =[:</D(a)]v, i.e., solved subject to the above boundary conditions. One

[D()+#0], ' obtains

' 7 lud R ‘
Vi 0(x, /1, 0) = 1WKO) b, t/r0,0), 7ro=a. (2.8) Tlro)= fa *ax ;—(x) exp[ BU(x)] f dy y*! exp[ - BU(y)]

The differential equation for Z(ry, ) can now be derived . 1 14 J' F d=1
-a U d - BU .
readily by integrating Eq. (2.3) over r to yield T exel AU(@)] a vy expl - BU()]
3 ‘ . (2.15)
% 2(ro, 1) =L (ro) Z(rg, #) . ’ (2.9) This expression entails a major result of our paper.
The second term of Eq. (2.15), i.e., the one propor-
This equation in a somewhl%t different form has been tional to «™!, bears a simple physical interpretation.
given by Pontryagin et al.'® The boundary conditions The probability p., (v) of finding a particle at equilibrium
(2.7) and (2. 8) become [D(a) #0] - in the absence of any reaction at 7 is
2Ary, t)=0 . (rg=a) : (2.10) R -1
o A bea(r) = {f dy y** exp[ - BU(y)]} 74t exp[- BUG)] .
and a
2.16)
K . .
VE(ry, #) = 5oy =y, 1) (ro=a), (2.11) Equation (2, 15) can then be r:;wrltten as
ro .
respectively, 7o) ?J; dx[D(x)Peq(x)]-l L dy?m(y)+[KPu(a)]-1 .
To obtain a differential equation for 7(ro) defined by _ @.17)
Eq. (1.2b), we integrate Eq. (2.9) over all time and - In the limit «—~ corresponding to the Smoluchowski
obtain by virtue of [gdt(8/9t) = (r,, ) =2 (ry, ©) = Z(ry, 0) boundary condition, the second term vanishes. In'the
=—1 the following: ' opposite limit k~0, i.e., small probability of reac-
' ’ tion, 7(r,) becomes independent of 7, :
L* () 7o) =~ 1 . (2.12) ool . p) ’ .10
)= a)i”t «-0). 2.18
While this equation is general, it can be solved analyti- Pee -
cally only for problems where the boundary conditions, The physical interpretation of this equation is the fol-

lowing: For small x the particles react slowly, and
starting at 7, first assume and then during the reaction
maintain the equilibrium distribution; in line of this

the potential, and the diffusion coefficient in an orthog-
- onal curvilinear coordinate system depend solely on a
single coordinate. In particular, for d dimensions

employing spherical coordinates we have argument the effective reaction rate constant [ ()} is
proportional to p,, (@) and to the microscopic reaction
rit ﬁ [ r&Dry) d_‘i_ 'r(ro)] -Dg g;{ ﬁ_ Tlr)=-1.  Tate constant k.
o . ° o o @.13) Finally, to obtain 7[Eq. (1.10)] we average 7(r,) over
, . o the equilibrium initial distribution in the region a <7 <R,
The radiation boundary condition (2.11) and the reflec- i.e., ‘ ‘

(R -1 R
“'={J; dw‘"exp[—BU(y)]} j dryrdt expl - BUGry)] Tiro) .

By virtue of Eq. (2,17) and changing orders of integration we have

R _ .
: R -1 -d R 2
= {[[ aesrent-puen]” | ax 55 entovtl{[ " ayyeml- BV +lep (2.19)
a a x
' I
By means of Eq. (2.186) this can be written assume that D(x) is independent of position.
R : R C a2 A - . o
_ 1 -l Before considering these applications we like to indi-
= L D) pey ()] [L Ay pea(y )] +lxpea) . , cate briefly how the above procedure can be used to cal-
" (2.20) culate the area under autocorrelation functions when the
In subsequent applications of this equation we shall dynamics of the underlying process is described by a
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TABLE 1. Analytical formulas for average passage times
describing reactions involving free diffusion in one, two, and
three dimensions.?

Dimension TD/R?
“1 (1 »72}/3 +D(1—x)/kR
2 (x —3)/8 (Inx)/2(1 ~ x%) + D(1 ~ x%)/2xk Rx
3 (1—x)2(5 +6x + 3x2 +x%)/15x(1 + x + x%) + D(1 - x°) /3K Rx?

aWith radiation boundary conditions 87/8r= (K/D)'r imposed at
r=a and reflection boundary condition 87/8r=0 at »=R, x
=a/R.

Smoluchowski-type equation. The autocorrelation func-
tion C4(¢) for a certain property A() is

Cal)= [[ drydr ADAGpulrp(E, /50, 0), (2.21)

where po,(r) =lim,.. . p(r, #/ry, 0). We can assume with-
out loss of generality that C,(0)=1 and {4) =0 with

= [ dropulra) FEo) .

The previous theory can immediately be generahzed to
reduce the calculation of

(2.22)

Ta= ’(: dtCA(t) (2.23)

. to quadrature. For this purpose we write Eq. (2.23) as

Ta= f dropeq(ro)A(re) Talre) , (2.24)
where
Ta(rg) = f”dt‘f drA(r)p(r, t/rg, 0) . 2.25)
0

In complete analogy to the derivation of Eq. (2.12) one
can show

L* (rg) Talre) =~ Alro) ’

with L* given by Eq. (2.4). Solving this differential
equation subject to the appropriate boundary conditions,
T4 can be obtained by evaluating the integral in Eq.
(2.24). Finally, in analogy to Eq, (1.1), the autocor-
relation function can be approximated as

Cat)=exp(-t/74) .

(2.26)

(2.27)

I1l. APPLICATION TO PROBLEMS INVOLVING FREE
DIFFUSION

We consider a particle, diffusing freely, which is’
trapped between two concentric spheres of radii a and

'R, We describe the absorption of the particle at 7 =a

by a radiation boundary condition. The boundary at
7 =R is assumed to be impenetrable, i,e., described
by a “reflective” boundary condition, For U(r) =0 the

integrals in Eq. (2.19) determining the average passage

time T are all elementary, The expressions for 7 thus
obtained for motion in one, two, and three dimensions
are given in Table I. The result for the one-dimensional

. x=a/R, and J,(y) and Y,(y) are Bessel functions.
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case, when k~*, had been obtained previously by Adam
and Delbriick! using an approach based on solving the
time-dependent diffusion equation. For the cases of
two- and three-dimensional motion these authors were
unable to obtain simple answers. For example, for the
two-dimensional situation they found (for k ~ «)!

© 4 ‘ [

DT Rz =
/ g yall =x%) [Jo(xyn)i’ [J1(yn F
where y, are the roots of the transcendental equation

Toley) ¥4 (9) - Yoly) Iy(3) =0,

(3.1)

This
expression is identical to the simple result in Table I,

Karplus and Weaver® generalized the approach of
Adam and Delbrick to radiation boundary conditions.
By a rather involved analysis these authors determined
7 in the limit x—~0, Their results agree with those in
Table I in this limit,

In Fig. 1 we compare for a reaction involving free
one-dimensional diffusion and described by a Smoluchow
ski boundary condition (k— =) the exact! Z(t) defined in
Eq. (1.3a) with its first passage time approximation
[Eq. (1.1)]:

T wprox(t) =exp[— 3Dt/(R? —a?)] .

Considering the simplicity of this expression the agree-
ment appears satisfactory, except at short times. It
should be emphasized, however, that the example of
Fig. 1 constitutes the most demanding test for the pass- .
age time approximation for free diffusion processes. I
k were finite or for diffusion in higher-dimensional
spaces, better agreement is obtained. This is demon-
strated in Tables II and I which compare the exact and
approximate Z(¢) for three-dimensional free diffusion.
Table II contains the results for a small diffusion space
with a/R =0.5. In case of the Smoluchowski boundary
condition the agreement between Z() and ;05 () is
clearly better than in Fig. 1. Finite « leads to a slow
down of the reaction and drastically improves the agree-

ment. Increasing the diffusion space likewise slows
I(t)

1.4

4 \\
8- \\ ' free diffusion

p \\ ----- first passage time
64 \ approximation
A
.2+

0

3Dt/(R-a)?

FIG. 1. Comparison of Z(f) and Z . (f) for a reaction in-

volving one-dimensional free diffusion in the interval [a, R}
assuming a reflective boundary at x=R and a Smoluchowski
boundary condition at x=a.
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" TABLE II. Comparison of exact and approxi-
mate Z(¢) for reactions involving three-di-
mensional free diffusion between two concen-
tric spheres (x=0.5).

KR/D—w kR/D=0.1
Dt/R*  Exact? Approx" Exact® Approx?
0 1.000 1.000 1.000 1.000
0.02 0.829 0. 888
0.04 0.738 0.789
0.06 0.661 0.701
0.10 0.532 0.553
0,20 0.309 0.306
. 0.40 0.104 0.094
0.60 0,035 0,029
1.00 0.004 0.003 0.917 0.919
2.00 0.844 0.845
4.00 0.714 0.713
10.00 0.435 0.430
20,00 ' ~ 0.189  0.185

3According to Adam and Delbriick.

Yexp(~ Dt/R*7) with T according to Table I.
®Numerical integration of the diffusion equa-
tion. .

down the reaction- process and hence improves the pass-
age time approximation as demonstrated in Table III
with a/R=0.1. :

The association of the repressor and the operator
situated on a DNA strand, a reaction puzzling for its
.- short time course, has beén described by Schranner and
Richter!! as a two step process: (1) the diffusion of the
repressor between two concentric cylinders to be trapped
on the interior cylinder, i.e., the DNA strand; (2) one-
dimensional diffusion of the repressor along the DNA
strand to be bound by the operator. In the case that the
trapping to the DNA strand is irreversible, the overall
process entails two first-order reactions with rates 73!
‘and 73!, say. One can readily show that in this case
the overall reaction is approximately described by a
single rate constant 7 given by

T=T+Ty . 3.22)
From Table I we have (k~«)
" R*'m@R/s) 3RE_p?
N7 RE-3%) T 8D, .20)
n=L%/3D,, .2¢)

where D; and D, represent the diffusion coefficients for
reaction steps (1) and (2), respectively, and 2L is the
length of the DNA molecule with the operator at the
center, Equations (3.2) agree with the result of Ref.

11 which were obtained by means of an involved analysis.
~ Consulting Table I, it is simple to account approximately
for the effect of a finite «, i.e., a situation in which the
repressor is not trapped with unit probability to the DNA
strand,

IV. INTRACHAIN REACTIONS OF POLYMERS

The theory of intrachain reactions of polymers has
been discussed in detail by Wilemski and Fixman' and

Szabo, Schulten, and Schulten: Diffusion controlled reactions

further analyzed by Doi%? both for the. Rouse—Zimm and
the harmonic spring model. The quantity of interest is
Z(¢), the fraction of polymers yet unreacted at time £.
In what follows we choose Z(¢) to be normalized such
that £(0)=1. We assume that the dynamics of the end-
to-end distance 7 is described by a Smoluchowski-type’
equation. Although we will be mainly concerned with
the harmonic spring model, i.e., U@)~7r2, the theory
presented in this section applies to any effective poten-
tial U(r). In particular, one may employ a potential
which accounts for excluded volume effects, The major
defect of the Smoluchowski-type polymer models for the
chain dynamics is the implicit assumption that the re-
laxation of the distribution of end-to-end distances to-
wards the equilibrium distribution in the absence of
reaction is governed by a single time constant, i.e.,
the “diffusion coefficient.” The purpose of this section
is to show that the average passage time 7is easily cal-
“culated for such description and that ;0. () [Eq. (1.1)]
provides an excellent approximation to the corresponding
time course of the reaction.

In the harmonic spring model for a d-dimensional
polymer the potential appearing in the Smoluchowski
equation is

Ulr) =dr?/26L% , @)

- where L is the mean distance between the polymer

ends, i.e., L?=(r2)., The corresponding equilibrium
. end-to-end distribution is
Pea®) =cr®texp(-ar?/2L?), _ 4.2)
representing a Gaussian chain, For a calculation of the '
average passage time on the basis of Eq. (2.19) we in-
troduce the dimensionless parameters

o a= (d/Z)l/za/L ,
A=(d/2)}/% o kL/D.,

4.3a)
(4.3b)

TABLE Ill. Comparison of exact and approxi-
mate Z(¢) for reactions involving three-dimen-
sional diffusion between two concentric spheres

(x=0.1).
KR/D— kR/D=0.1

Dt/R* Exact* Approx® Exact® Approx®

0 1.000 1. 000 1.000 1.000
. 0.2 0.925 0.929

0.4 0.860 0.863

0.6 0. 800 0.803

0.8 0.744 0.746

1.0 0.692 0.694 :

-2,0 0.481 0.481 0.992 0.994
4.0 0.233 0.232 0.986 0.988
8.0 0.055 0.054 0.975 0.976

10.0 0.026 0.026 0.969 0.971

. 20.0 0.001 ~ 0.001 0.941 0.942
100.0 0.744 0.742
200.0 0.554 0.551

3According to Adam and Delbriick.

Yexp(—Dt/R?r) with T values according to

Table I. - -
®Numerical integration of the diffusion equa-

tion.
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and take the limit R—<, This yields

(dD/21%)7= [L‘ dx x% exp(- xz)] - -J‘: dx 5+ éxp(xa) [deyyd'l exp(-y 2)] : +x-1 exp(;rz) I: dyy%texp(~y?)

We want to consider first the simplest case, the end-
end reaction of a one-dimensional polymer described by
the Smoluchowski boundary condition x—, Assuming
the reaction occurs every time the ends meet, i.e,,
a=0, Eq. (4.4) becomes. -

(D/2L3) 7= [f: dx exp(; xz)]“1 fo” dx exp(x?)

<[ o]

By virtue of'?

[J‘: dy exp(—ya)] ’ = J‘: dt (1 +£2)  exp[ - 2%(1 +¢2)]

(4.5)

the integral is evaluated readily to yield

t=L%1n2/D (4.6)
and thus
znpmx(t) = exp(“ Dt/La In2) . @.7)

In the Appendix we derive an analytical expression for
the exact 2():

2(t) = (2/7) sin™ [exp(- Dt/L?)] . @4.8)

Figure 2 compares the expressions (4.7) and (4. 8) to
demonstrate that the passage time approximation is
satisfactory indeed. However, just as for the case of
free diffusion the correspondence between the exact and
the approximate Z(¢) improves on going to higher dimen-
sions and to radiation boundary conditions,

The Taylor expansion of Eq. (4.8) in terms of éxp(— Dt/
L%, i.e., ' :
2 ¥ 20 (1 \2 -1 2
20=2 3 @) [2%E! Pk +1)]" expl- 2k +1)Dt/12)] ,
k=0 -
4.9)

corresponds to the eigenvector expansion of the one-

1.
T harmonic potential -
B\
E \\ ----- first passage time
\ approximation
6 AN exact
b
.2
— Ty L e
1

Dt/<r?>

FIG. 2. Comparison of Z(f) and ;0 (f) for a reaction in-
volving the ends of a one-dimensional Gaussian chain assuming
a Smoluchowski boundary condition at x=0.
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4.4)

[
dimensional polymer reaction. This yields the eigen-
values

Ne=— 2k +1)D/L?

The passage time approximation describes T(t) as a
single exponential decay corresponding to a decay con-
stant A= ~1,4 D/L?, The validity of this description de-
pends (1) on a large spacing between the eigenvalues such
that >(¢) over most of its decay is dominated by X =X;

(2) on the condition for the coefficients ¢, multiplying
exp(y,7) in Eq. (6.9): co>c,, k#0. Evaluation yields
for ¢, £=0, 1, 2,... the values 0.64, 0. 11, 0.05, 0.03,
0.02,..., i.e., the lowest eigenvalue accounts for only
64% of the total particle decay, and the remaining par-
ticles decay faster, The first passage time approxima-
tion assumes that all particles decay with a single rate
A, albeit somewhat larger than Xp to account for the fast
decay contribution to (), These observations actually
reflect general conditions for the validity of the passage
time approximation.

k=0,1,2,... . 4.10)

We next consider three-dimensional polymers. For
the integrals in Eq. (4.4) to exist, a cannot be taken
zero, This would also be physically unreasonable as
@ =0 implies a vanishingly small reaction domain. For
@>0, the integrals in Eq. (4.4) cannot be evaluated
analytically. However, for most situations of interest,

@ is small and hence an expansion of 7 in terms of «
yields accurate passage times. For exa{nple, a polymer
with L =50 A and a reaction radius a =5 A yields @ =0, 12,
The required expansion is

@D/L)7=Vr/2a+ (2 -1) - aVr/2 +402/3
+Va(l +a?)/2x +0(c®) . (4.11)

We have established by direct numerical integration of
Eq. (4.4) that this expansion is accurate to within 6%
for @<0.5 and A>1; for a<0, 3 the error is smaller
than 1%. The leading term in expansion (4.11), which
is proportional to 01'1, has been derived previously by
Sunagawa and Doi® employing a rather cumbersome
approach,

In Table IV the exact and approximate Z(¢) for a three-
dimensional polymer are compared. For the Smoluchow-
ski boundary condition (A ~<«), the most stringent test,
the agreement found is much better than that for the one-
dimensional case presented in Fig. 2, the agreement
holding even at relatively short times. For smaller val- -
ues of a the agreement should be even better. For
larger values of « it becomes poorer. For example,
when @=0.7 (this is a rather unphysical value since it
implies the reaction occurs when the ends approach
57% of the root mean square end-to-end distance) at
8 Dt/L?=0.5, the exact T(f) is 0.465 while the approxi-
mate value is 0,527, Table IV shows that for smaller
reaction probabilities (A =0.1) the agreement between.
Z(t) and Ty, (t) is dramatically improved,
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TABLE IV. Comparison of exact and approxi-
mate Z(¢) for the reaction of a three-dimen-
sional polymer with «=0.2.2

A=+ A=0.1
3Dt/L* - Exact Approx® Exact Approx®
0 1.000 1.000 1.000 1.000
0.5 0.858 0,882 0. 960 0.963
1.0 0.757 0.779 0. 924 0. 927
2.0 0.593 0.606 0. 855 0.859
4.0 0.364 0.368 0.734 0.738
6.0 0.224 0.223 0.629 0.634
8.0 0.138 0.135 0. 540 0.545
10.0 0.085 0.082 0.463 0.468
20.0 ) 0.215 0.219
40.0 0; 046 0,048

3This value of @ implies that the reaction can
occur when the polymer ends reach 16% of the
root mean square end~to-end distance.
Yexp(—3D¢t/L%1) with 7 standing for the average
mean passage time. '

The range of validity of the first passage time approxi-
mation can be rationalized as follows: For slow end-
end reactions, i.e., if the ratio of the minimum reac-
tion distance over the average polymer length L and/or.
the reaction probability (i.e., k) are small, the polymer
diffusion maintains the equilibrium end-to-end distribu-
tion at each instance of the reaction course and the
polymer appears to react by a first-order process like
a species without any internal degrees of freedom. .

Within the framework of a Smoluchowski-type descrip-
tion of polymers one is not limited to the harmonic spring
model [U(r)~x%]. Haas et al., ' for example, fitted the -
end -to-end distribution as measured by fluorescence en-
ergy transfer to a function suggested by Edwards'‘:

Do) = cr?exp[—y{r - 8)1]. (4.12)

" For a polymer with L =22,5 A these authors determined
the parameter values y=0.01 and 6=16.7, Thus, the
measured end-to-end distribution is markedly non-
Gaussian. Abstracting the free energy U(r) from Eq.
(4.12), the first passage time (\~=) can be determined
by numerical integration, ~Assuming that a reaction
occurs when the end-to-end distance is 6 A, we found
D7=1200 A%, The corresponding evaluation for a Gaus-
sian polymer yields a much shorter first passage time
Dr=1380 A2, Thus, for the same diffusion coefficient
the chain is predicted to react three times more slowly
when excluded volume effects are accounted for in an
approximate manner. This is primarily a consequence
of the fact that sterical interactions partially hinder the
two polymer ends from reaching each other.

V. CONCLUSION

We have considered in this paper reaction systems
governed by a Smoluchowski-type diffusion equation. In
many applications single relaxation (passage) times can
account for the behavior of such systems. On the basis
of the theory of first passage times, we have derived
differential equations and appropriate boundary condi-
tions which yield directly the desired relaxation times.

Szabo, Schulten, and Schulten:

Diffusion controlled reactions

For the case of the particle number of reactive systems
undergoing various diffusion processes, we have shown
that these differential equations are solved by elementary
quadrature. In particular, we could generalize the
Smoluchowski boundary condition, describing diffusion
controlled reactions, to the radiation boundary condition,
accounting for. non-diffusion controlled processes. We
have also demonstrated, for a few cases amenable to
either analytical or numerical solution, to what extent
processes involving diffusion and reaction can be de-
scribed by a single relaxation time, i.e., as first-
order reactions. Our applications considered reactions
involving free diffusion over finite one-, two, and three-
dimensional domains, e.g., the repressor-operator
association, and intramolecular reactions of polymer
end groups. In all these applications the concept of a
single relaxation (passage) time appeared very suitable,
It is expected that this concept, because of its mathe-
matical simplicity and its close correspondence to ex-
perimental observations, which in most cases do not
yield the fine details of more complete descriptions, will
prove fruitful for many further applications.
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APPENDIX

In the following we will derive the simple analytical
expression (4. 8) for Z(¢) describing the end-to-end reac-
tion of a one-dimensional Gaussian chain, The Smoluchow-
ski equation for this problem is

3 ¥ ]
} gp(x, /%y, 0)=D (W" +L2 Fy x)p(x, /%, 0) .

(A1)

The reaction will be accounted for by a Smoluchowski
boundary condition imposed at x =0. The normalized
equilibrium distribution for the chain without reaction
is (=0 <x<)

Deq(*) = @nL2) /2 exp(~ x2/2L%) , (A2)

with {x2 =L%. The solution of Eq. (A1) in the absence

of reaction is’

Blx, t/x0, 0) = @rLPTY Y% exp[ — (x — x &2t/ 222 /2L2T] ,
(A3)

where T =1 -exp(-2Dt/L?), The Green’s function satis-

fying the Smoluchowski boundary condition at x =0 is con-

structed readily by the method of images (x>0, x,>0):
p(x, t/xOy 0) =.5(x, t/xO, 0) —1;(.76, t/" Xo, 0) . (A4)

The reaction rate is then

9 ° 9 '
- 3 S, )= - fo dx 2 pl, t/x, 0)
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;_-D [%P("; t/ %, 0)] £=0

B 2Dx, 2 2Dt /L2 jo 72T
= DTG, I°T) exp(-x5e /2L2T) ,

(A5)
Averaging over p,q,'(xo), x0> 0 yields
k] _ 2D exp(~ Dt/L?)
o 0=~ 7[1 - exp(- 2D¢/LH7Z - (46)

A factor of 2 has beéen included because Dea(x0) given by
Eq. (A2) is normalized on the interval —©<x<w, Inte-
grating Eq. (A6) subject to the initial condition Z(0)=1
gives finally ’

Z@) =217 sin™ [exp(- Dt/L?)] . | @7

As a test one may evaluate from this result the first
passage time 7 according to the definition 7= [5Z(2) dt.
Substitution of y =¢™* yields, by virtue of [jdyy™ sin"'y
=(n/2)In2, expression (4.6) which in Sec. IV had been
obtained by integrating the passage time equation,
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